Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Some properties of second kind integral equations in the problems of electromagnetic fields diffraction

Keywords:

M.A. Buzova – Ph.D. (Eng.) scientist, leading researcher, JSC «Concern «Automation». E-mail: bma@oao-avtomatika.ru


Main properties of second kind integral equations means boundary condition for magnetic field tangential component are shown. The main properties of the second kind integral equations are: 1) the equation degenerates into a tautological equality in case of unlocked scatterer; 2) the value of the integral in equation at a singular point exists and can be calculated analytically; 3) the solution degenerates into physical optic solution in the case of an infinitely extended flat scatterers; 4) the ratio of the currents in the illuminated and shadow sides of the scatterer in the case of thin sheet scatterer uniquely determined by the values of the external magnetic field are also taken on respective sides of the scatterer. The above properties of the methods of the second kind integral equations and physical optics, on the one hand, impose substantial restrictions on the use of these methods, but on the other hand, a great opportunity for the construction of approximate the second kind integral equations and the novel current-based hybrid methods based on them.
References:
  1. Chew W.C., Jin J., Michielssen E., Song J. Fast and efficient algorithms in computational electromagnetics. New York: Artech House. 2001. 954 p.
  2. Yan S., Jin J.-M., Nie Z. Accuracy improvement of the second-kind integral equations for generally shaped objects // IEEE Trans. on Ant. and Prop. 2013. V. 61. № 1. P. 788 – 797.
  3. Rius J.M., Ubeda E., Parron J.On the testing of the magnetic field integral equation with RWG basis functions in method of moments // IEEE Trans. on Ant. and Prop. 2001. V. 49. № 11. P. 1150 – 1553.
  4. Ergül Ö., Gürel L. Linear-linear basis functions for MLFMA solutions of magnetic-field and combined-field integral equations // IEEE Trans. on Ant. and Prop. 2007. V. 55. № 4. P. 1103 – 1110.
  5. Yla-Oijala P., Taskinen M. Improving conditioning of electromagnetic surface integral equations using normalized field quantities // IEEE Trans. on Ant. and Prop. 2007. V. 55. № 1. P. 178 – 185.
  6. Kataja J., Polimeridis A.G., Mosig J.R., Ylä-Oijala P. Analytical shape derivatives of the MFIE system matrix discretized with RWG functions // IEEE Trans. on Ant. and Prop. 2013. V. 61. № 1. P. 985 – 988.
  7. Asvestas J.S., Richardson D.W., Allen O.E. Calculation of the impedance matrix inner integral of the magnetic-field integral equation to prescribed precision // IEEE Trans. on Ant. and Prop. 2013. V. 61. № 11. P. 5553 – 5558.
  8. Vipiana F., Wilton D.R., Johnson W.A. Advanced numerical schemes for the accurate evaluation of 4-D reaction integrals in the method of moments // IEEE Trans. on Ant. and Prop. 2013. V. 61. № 11. P. 5559 – 5566.
  9. Chew W.C., Davis C.P., Warnick K.F., Nie Z.P., Hu J., Yan S., Gürel L. EFIE and MFIE, why the difference? // Proc. IEEE Antennas Propag. Symp. San Diego. CA. USA. Jul. 2008.
  10. Zhang Y., Cui T.J., Chew W.C., Zhao J. Magnetic field integral equation at very low frequencies // IEEE Trans. on Ant. and Prop. 2003. V. 51. № 8. P. 1864 – 1871.
  11. Mittra R. Computer techniques for electromagnetics. Hemisphere Publishing Corporation. 1987. 403 r.
  12. Burke G.J., Poggio A.J. Numerical electromagnetic code (NEC) – method of moments. California: Lawrence Livermore Laboratory. 1981. 664 p.
  13. Balanis C.A. Advanced engineering electromagnetics. New York: Wiley. 1989. 1002 p.
  14. Davidson D.B. Computational electromagnetics for RF and microwave engineering. Cambridge University Press. 2005. 411 r.
  15. Bladel J. Electromagnetic fields. IEEE Antennas and Propagation Society. 2007. 1155 r.
  16. Jin J.-M. Theory and Computation of Electromagnetic Fields. Hoboken. NJ: Wiley. 2010.
  17. Atkinson K.E. The numerical solution of integral equations of the second kind. Cambridge, U.K.: Cambridge Univ. Press. 1997.
  18. Colton D.L., Kress R. Integral equation methods in scattering theory. New York: Wiley. 1983.
  19. Booton R.C. Computational methods for electromagnetics and microwaves. New York: Wiley. 1992. 183 p.
  20. Peterson A.F., Ray S.L., Mittra R. Computational methods for electromagnetics. Piscataway. NJ: IEEEPress. 1998.
  21. Vasilev E.N. Vozbuzhdenie tel vrashhenija. M.: Radio i svjaz. 1987. 272 s.
  22. Fok V.A. Problemy difrakcii i rasprostranenija ehlektromagnitnykh voln. M.: Sov. radio. 1970. 520 s.
  23. Kupradze V.D. Granichnye zadachi teorii kolebanijj i integralnye uravnenija. M.-L.: Gostekhizdat. 1951. 280 s.
  24. Kravcov V.V. Integralnye uravnenija v zadachakh difrakcii. V kn.: Vychislitelnye metody i programmirovanie. M.: Izd. MGU. 1966. Vyp. 5. S. 260 – 293.
  25. Dmitriev V.I., Zakharov E.V. Integralnye uravnenija v kraevykh zadachakh ehlektrodinamiki. M.: Izd-vo Mosk. un-ta. 1987. 167 s.
  26. Zakharov E.V., Pimenov JU.V. CHislennyjj analiz difrakcii radiovoln. M.: Radio i svjaz. 1982. 264 s.
  27. Ilinskijj A.S., Smirnov JU.G. Difrakcija ehlektromagnitnykh voln na provodjashhikh tonkikh ehkranakh. M.: Radiotekhnika. 1996. 166 s.
  28. Ashikhmin A.V., Preobrazhenskijj A.P. Issledovanie iteracionnogo metoda reshenija vektornykh integralnykh uravnenijj Fredgolma vtorogo roda v kraevykh zadachakh ehlektrodinamiki // Proektirovanie i tekhnologija ehlektronnykh sredstv. 2005. № 1. S. 9 – 13.
  29. Gabriehljan D.D., Zvezdina M.JU., Sinjavskijj G.P. Metody reshenija zadach difrakcii dlja cilindricheskikh poverkhnostejj s radiopogloshhajushhimi pokrytijami // Uspekhi sovremennojj radioehlektroniki. 2006. № 6. S. 68 – 80.
  30. Golovkin M.A. O nekotorykh svojjstvakh integralnykh uravnenijj Fredgolma vtorogo roda // Uchenye zapiski CAGI. 2006. T. XXXVII. № 4. S. 8 – 11.
  31. Hodges R.E., Rahmat-Samii Y. An iterative current-based hybrid method for complex structures // IEEE Trans. on Ant. and Prop. 1997. V. 45. № 2. P. 265 – 276.
  32. Brown K.W., Prata A. Jr. Closed-Form Tangential Edge Conditions for Finite-Thickness Perfectly Conducting Plates // IEEE Antennas and Propagation Society International Symposium (13-18 Jul 1997). 1997. V. 3. P. 2076 –2079.
  33. Davis W.A., Mittra R. A new approach to the thin scatterer problem using the hybrid equations // IEEE Trans. on Ant. and Prop. 1977. V. 25. № 3. P. 402 – 406.
  34. Thiele G.A. Overview of selected hybrid methods in radiating system analysis // Proc. IEEE. 1992. V. 80. № 1. P. 66 – 78.
  35. Medgyesi-Mitschang L.N., Wang D.-S.Review of hybrid methods on antenna theory // Ann. telecomm. 1989. V. 44. № 9. P. 76 – 94.
  36. Jakobus U., Landstorfer F.M. Improvement of the PO-MoM hybrid method by accounting for effects of perfectly condunting wedges // IEEE Trans. on Ant. and Prop. 1995. V. 43. № 10. P. 1123 – 1129.
  37. Zhao W.-J., Li J.L.-W., Hu L. Efficient current-based hybrid analysis of wire antennas mounted on a large realistic aircraft // IEEE Trans. on Ant. and Prop. 2010. V. 58. № 8. P. 2666 – 2672.
  38. Chen H.-T., Zhu G.-Q., Luo J.-X., Yuan F. A modified MoM-PO method for analyzing wire antennas near to coated PEC plates // IEEE Trans. on Ant. and Prop. 2008. V. 56. № 6. P. 1818 – 1822.
  39. Ma J., Gong S.-X., Wang X., Liu Y., Xu Y.-X. Efficient wide-band analysis of antennas around a conducting platform using MoM-PO hybrid method and asymptotic waveform evaluation technique // IEEE Trans. on Ant. and Prop. 2012. V. 60. № 12. P. 6048 – 6052.
  40. Jorgensen E., Meincke P., Breinbjerg O. A hybrid PO-higher-order hierarchical MoM formulation using curvilinear geometry modeling // Antennas and Propagation Society International Symposium. 2003. V. 4. P. 22 – 27.

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio