Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Fractal image coding

Keywords:

E.V. Egorova – Ph. D. (Eng.), MIREA


Fractal compression methods or image coding based on fractal iterative transformations are considered. Deterministic fractals of extremely high visual complexity have very low information content generated by a simple recursive algorithm. Comparison of different methods showed that the blocks with sharp boundaries fractal coding is better than vector quantization, but the blocks are identical in the case of regions of texture. Fractal image compression describes the fact that real-world objects and their images can be modeled by deterministic fractal objects - a set of two-dimensional attractors and affine transformations. Considered as compared adaptive block coding is considered.
References:

  1. Anishchenko V. S., Vadivasova T. Ye., Astakhov V. V. Nelineynaya dinamika khaoticheskikh i stokhasticheskikh sistem. Saratov: SGU. 1999. S. 368.
  2. Morozov A. D., Dragunov T. N. Voykova S. A., Malysheva O. V. Invariantnye mnozhestva dinamicheskikh sistem v Windows. M.: Editorial URSS. 1998. S. 240.
  3. Prett U. K. Tsifrovaya obrabotka izobrazheniy: V 2 t.: Per. s angl. / pod red. D. S. Lebedeva. M.: Mir. 1982. T. 1.S. 312. T. 2. S. 480.
  4. Barnsley M. F., Iterated Function Systems and Global Construction of Fractals // Proc. R. Soc. (London). 1985. V. A399. 1817. P. 243–275.
  5. Barnsley M. F., Ervin V., Hardin D., Lancaster J., Solution of an Inverse Problem for Fractals and Other Sets // Proc. Nat. Acad. Sci. USA. 1986. V. 83.7. P. 1975–1977.
  6. Beaumont J. M. Image Data Compression Using Fractal Techniques // ET Technol. J. 1991. V. 9. № 4. P. 93–109.
  7. Jacquin A. E. Fractal Image Coding: A Review // Proc. IEEE. 1993. V. 81. № 10. P. 1451–1465.
  8. Danford H., Shvarts Dzh. Lineynye operatory: Per. s angl. M.: Mir. 1962. T.1 S.895. 1996. T.2. S.1063. 1974. T.3. S.661.
  9. Jacobs E. W., Fisher Y., Boss R. D. Image Compression: A Study of the Iterated Transform Method // Signal Process. 1992. V. 29. P. 251–263.
  10. Jacquin A. E. Image Coding Based on a Fractal Theory of Iterated Contractive Image Transformations // IEEE Trans. 1992. V. 1. P. 18–30.
  11. Lepsoy S., Oien G.E., Ramstad T.A. Attractor Image Compression with a Fast Non-Iterative Decoding Algorithm // Proc. ICASSP-93. 1993. P. 337–340.
  12. Monro D. M., Dudbridge F. Fractal Approximation of Image Blocks // Proc. ICASSP-92. 1992. V. III. P. 485–488.
  13. Monro D. M., Dudbridge F. Fractal Block Coding of Images // Electron. Lett. 1992. V. 28, 11. P. 1053–1055.
  14. Monro D. M. Generalised Fractal Transforms: Complexity Issues // Proc. Data Compression Conf 1993. P. 254–261.
  15. Potapov A. A. Fraktaly v radiofizike i radiolokatsii: Topologiya vyborki. Izd. 2-e. M.: Universitetskaya kniga. 2005. S. 848.
  16. Oien G. E., Lepsoy S., Ramstad T. A. An Inner Product Space Approach to Image Coding by Contractive Transforms // Proc. ICASSP-91. 1991. P. 2773–2776.
  17. Rinaldo R., Zakhor A. Fractal Approximation of Images // Proc. Data Compression Conf. 1993. P. 451.
  18. Vaisey J., Gersho A. Variable Block-Size Image Coding // Proc. ICASSP-87. 1987. P. 1051–1054.
  19. Linde Y., Buzo A., Gray R. M. An Algorithm for Vector Quantizer Design // IEEE Trans. 1980. V. COM-28. № 1. P. 84–95.
  20. Uelsted S. Fraktaly i veyvlety dlya szhatiya izobrazheniy v deystvii: Per. s angl. M.: Triumf. 2003. C. 320.

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio