Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Structural and dynamical model of photon and monochromatic radiation

Keywords:

M. B. Saikhanov – Ph.D. (Phys.-Math.), Senior Research Scientist, Interdisciplinary Scientific Research Institute H.I. Ibragimov Russian Academy of Sciences (KNII), Grozny


Proceeding from the structural and dynamic organization of a matter at fine (submicroscopic) level, possibility of an explanation of corpuscular wave dualism and Planck's constant is shown. The substantial sense of the last consists that she personifies unity of aspects of movement and a matter structure. Rather simply it is shown on the example of toroidal model of the rotating as a wheel photon which kinetic energy consists of kinetic energies of its forward and rotary movements. This model allows Planck's constant to give interpretation as the rotary moment of a photon-ring remaining at its movement. However such mechanical model leaves open a question of the physical reason of formation and steady existence of a photon which can be solved only on the basis of the model considering as well structural aspect of its description. Non-equilibrium (irreversible) nature of formation of a photon leads to thought that it represents dissipative structure in the form of a toroidal whirlwind. Its formation and stability in this case find the exhaustive explanation on the basis of kinetic modeling of dissipative structures. In particular, the stationary (steady) state of a photon-whirlwind is reached at balance existence between a stream of entropy and production of entropy in the local scale of the fine environment (physical vacuum). As its formation is carried out in volume of the fine environment (instead of on an interface of phases), it is a question of the ring whirlwind which axis is focused along the movement direction. Besides, the three-connected topology of a surface the torus corresponding to this whirlwind, allows also possibility of a rotary motion on its forming circle. At addition of this rotary motion with a rotary motion round a whirlwind axis it forms the screw spiral closed on. Possibility of modeling of electromagnetic radiation as non-equilibrium system is considered also. It is shown that for monochromatic radiation from the point of view of the minimum dissipation of energy of photons at their movement in the environment their coaxial arrangement and association in a continuous cylindrical double spiral is optimum. Thus feature of this double spiral is that it can carry out the mechanism of cross fluctuations of wave process due to elastic properties in the direction normal to the direction of distribution of monochromatic radiation. The offered model will be coordinated with a phenomenon of "light twisting" according to which movement of a ray of light is carried out on a spiral in the direction of its distribution, including, with results of recent researches in this direction.
References:

  1. De Broyl' L. Tainstvennaya postoyannaya  − velikoe otkrytie Maksa Planka // Po tropam nauki. M.: Izdatel'stvo inostrannoy literatury. 1962. S. 139.
  2. Plank M. O zakone raspredeleniya energii v normal'nom spektre / Izbrannye trudy. M.: Nauka. 1975. S.258.
  3. Eynshteyn A. Ob odnoy evristicheskoy tochke zreniya kasayushcheysya vozniknoveniya i prevrashcheniya sveta / Sobranie nauchnykh trudov. M.: Nauka. 1966 T. 3. S.92.
  4. Baskhanov R. S., Makhtiev Sh.M. Sledstviya ob''yasneniya chastoty i dliny volny sveta s korpuskulyarnykh pozitsiy. VINITI. № 3415. V90. 1990.
  5. Landau L. D., Lifshits Ye. M. Teoreticheskaya fizika. T.1. Mekhanika. M.: Nauka. 1973. S. 126.
  6. Gyuygens Kh. Traktat o svete. M.-L.: Ob''edinyennoe nauchno-tekhnicheskoe izdatel'stvo. 1935.
  7. Frenel' O. Izbrannye trudy po optike. M.: Gosudarstvennoe izdatel'stvo tekhniko-teoreticheskoy literatury. 1955.
  8. Lenard P., Tomson Dzh. Dzh., Sautserns L., Kempbell N., Plank M. Efir i materiya. M.: KomKniga. 2007.
  9. Zu D. The classical structure model of single photon and classical point of view with regard to wave-particle duality of photon // Progress In Electromagnetics Research Letters. 2008. V. 1. 109(118.
  10. Borisov A. V., Kilin A. A., Mamaev I. S. Dinamika vikhrevykh kolets: chekharda,  khoreografii i problema ustoychivosti // Nelineynaya dinamika. 2012. T. 8. № 1. S.113.
  11. Gil'bert D., Fon-Kossen S. Naglyadnaya geometriya. M.-L.: Ob''edinyennoe nauchno-tekhnicheskoe izdatel'stvo. 1936. S. 257.
  12. Gel'mgol'ts G. Ob integral'nykh uravneniyakh gidrodinamiki, sootvetstvuyushchikh vikhrevym dvizheniyam // Nelineynaya dinamika. 2006. T. 2. № 3. S. 473.
  13. Tomson Dzh. Dzh. Elektrichestvo i materiya. M.-L.: Gosudarstvennoe izdatel'stvo. 1928.
  14. Puankare A. Teoriya vikhrey. Izhevsk: NITs “Regulyarnaya i khaoticheskaya dinamika”. 2000.
  15. Moffat K. Vikhrevaya dinamika: nasledie Gel'mgol'tsa i Kel'vina // Nelineynaya dinamika. 2006. T. 2. № 4. S. 401.
  16. Glensdorf P., Prigozhin I. Termodinamicheskaya teoriya struktury, ustoychivosti i fluktuatsiy. M.: Yeditorial URSS. 2003. S. 149.
  17. Saykhanov M. B. Kineticheskoe modelirovanie dissipativnykh struktur // Nelineynyy mir. 2013. T. 11. № 1. S. 44.
  18. Maksvell Dzh. Prityazhenie / Stat'i i rechi. M.: Nauka. 1968. S. 166.
  19. Vikhman E. Berkleevskiy kurs fiziki. T. 4. Kvantovaya fizika. M.: Nauka. 1977. S. 168.
  20. Maksvell Dzh. Izbrannye sochineniya po teorii elektromagnitnogo polya. M.: Gosudarstvennoe izdatel'stvo tekhniko-teoreticheskoy literatury. 1952. S. 129.
  21. Akhiezer A. I., Berestetskiy V. B. Kvantovaya elektrodinamika. M.: Nauka. 1981. S. 80.
  22. Saykhanov M. B. O modelirovanii neobratimykh protsessov v neravnovesnykh sistemakh // Vestnik MGU. Ser. Fizika. Astronomiya. 2002. № 4. S. 34.
  23. Klyshko D.N. Kvantovaya optika: kvantovye, klassicheskie i metafizicheskie aspekty // Uspekhi fizicheskikh nauk. T. 164. № 11. 1994. S. 1187.
  24. Lamb W. Anti-photon // Applied Physics. 1995. B60. R. 77(84.
  25. Milant'ev V. P. Sto let kvantam sveta // Uspekhi fizicheskikh nauk. 2005. T. 175. № 11. S. 1233.
  26. Heeck J. How stable is the photon? // Physical Review Letters: (2013).V. 111. P. 021801.
  27. Matukrishnan A., Skalli M., Zubayry S. Reviziya kontseptsii fotona.  http://bourabai.narod.ru/articles/muthukrishnan/revisited.htm.
  28. Allen L., Beijersbergen M. W., Spreeuw R. J. C., Woerdman J. P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes // Physical Review. 1992. A 45. P. 8185(8189.
  29. He H., Friese M., E., J., Heckenberg N. R., Rubinsztein-Dunlop H. Direct Observation of Transfer of Angular Momentum to Absorptive Particles from a Laser Beam with Phase Singularity // Physical Review Letters. 1995. V. 75. P. 826(829.
  30. Torres J. P., Torner L. Application of light with orbital angular momentum. John Wiler & Sons. 2011.

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio