Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS

Тел.: +7 (495) 625-9241


Multiple feed per beam antenna based on disk-on-rod elements


Yu.V. Krivosheev – Ph. D. (Eng.), Senior Research Scientist, PJSC «Radiofizika» (Moscow), Lecturer, Moscow Institute of Physics and Technology (State University) A.V. Shishlov – Ph. D. (Eng.), Head of Department, PJSC «Radiofizika» (Moscow), Deputy Head of Department, Moscow Institute of Physics and Technology (State University) S.A. Ganin – Head of Sector, PJSC «Radiofizika» (Moscow) I.V. Yom – Ph. D., Team Leader, ETRI (Republic of Korea) M.S. Om – Ph. D., Principal Researcher, ETRI (Republic of Korea) S.Kh. Yun – Ph. D., Principal Researcher, ETRI (Republic of Korea)

Feed arrays of reflector multiple beam antennas (MBA) for satellite communications and broadband access at Ku- and Ka-bands are currently based on the single feed per beam (SFB) concept [1]. In such antennas, the outputs of the elements are directly connected to the transceiver (transponder). However, in recent years much effort is put to develop a different approach, namely, multiple feed per beam (MFB). In such antennas there is a passive beam-forming network (BFN) between the outputs of the radiating array elements and the transceiver (BFN doesn’t contain any controllable elements such as controllable phase shifters, amplifiers, etc.) When one input of the BFN is excited, it excites several array elements (a cluster). Clusters formed by adjacent BFN inputs overlap. The purpose of such feed arrays is to increase crossover between adjacent MBA beams and to increase antenna gain. General theory of hybrid antennas with cluster feeds is described for example in [2−4]. In [5−10] MFB arrays based on waveguide BFNs and horn elements are considered. Clusters mostly consist of seven elements. In [8] a four-element cluster is also described. In [10] MFB and SFB concepts are compared. The MFB and SFB arrays have equal spacing between independent channels. The com-parison showed that gain and aperture efficiency of an MFB channel is 0.9 dB higher than that of a SFB element. Based on this com-parison the authors make a conclusion about utility of the MFB concept. Obvious disadvantages of MFB arrays with waveguide BFN are bulky and heavy structure, manufacturing complexity, and high cost. However, its structure can be simplified if beamforming is achieved via mutual coupling of array elements. One kind of array elements with strong mutual coupling is disk-on-rod (cigar) antennas. In [11−13] mutual coupling of disk-on-rod elements was exploited to achieve flat-topped element pattern. In this paper, it is proposed to make MFB array based on disk-on-rod elements. The results of its computer simulation as well as comparison of performances with MFB [10] are presented. The array proposed provides a dense arrangement and high overlapping of the antenna beams. Passive and active alternating radiators have different disk-on-rod parameters in order to maximize cluster di-rectivity. It is shown that performances of this MFB array are competitive with the MFB feed array with a waveguide beam former [5−10].


  1. Anpilogov V.R., SHishlov A.V., EHjjdus A.G. Mnogoluchevye antennye sistemy HTS // Tekhnologii i sredstva svjazi. 2013. № 6−2 (99). S. 54−67.
  2. Vilenko I.L., Krivosheev JU.V., SHishlov A.V. Gibridnye zerkalnye antenny s obluchajushhimi aktivnymi fazirovannymi reshetkami // Antenny. 2011. № 10 (173). S. 22−42.
  3. Shishlov A.V., Vilenko I.L., Krivosheev Yu.V. ActiveArray-FedReflectorAntennas. PracticalRelationsandEfficiency // Proceedingsofthe 6-thEuropeanConferenceonAntennasandPropagation. Prague. 2012. P. 2362−2366.
  4. Shishlov A.V., Vilenko I.L., Krivosheev Y.V.Asymptotictheory, designandefficiencyofarray-fedreflectorantennas // Proceedingsofthe 2013 IEEEInternationalSymposiumonPhasedArraySystemsandTechnology. Boston-Waltham. 2013. P. 320−327.
  5. Schneider M., Hartwanger C., Sommer E., Wolf H.Themultiplespotbeamantennaproject«Medusa» // TheThirdEuropeanConferenceonAntennasandPropagation (EuCAP). 2009. P. 726−729.
  6. Schneider M., Hartwanger C., Sommer E., Wolf H.TestResultsfortheMultipleSpotBeamAntennaProject«Medusa» // TheFourthEuropeanConferenceonAntennasandPropagation (EuCAP). 2010. P. 1−4.
  7. Schneider M., Hartwanger C., Wolf H.Antennasformultiplespotbeamsatellites // CEASSpaceJournal. 2011.
  8. Lafond J.C., Vourch E., Delepaux F., Lepeltier P., Bosshard P., Dubos F., Feat C., Labourdette C., Navarre G., Bassaler J.M.ThalesAleniaSpaceMultipleBeamAntennasforTelecommunicationSatellites // Proceedingsofthe 8‑thEuropeanConferenceonAntennasandPropagation (EuCAP). 2014. P. 167−171.
  9. Leclerc C., Aubert H., Romier M., Annabi A.DesignofMultipleFeedperBeamAntennabasedona 3-DDirectionalCouplerTopology // 15-thInternationalSymposiumofAntennaTechnologyandAppliedElectromagnetics (ANTEM). 2012. P. 1−5.
  10. Leclerc C., Romier M., Aubert H., Annabi A.Ka-BandMultipleFeedperBeamFocalArrayUsingInterleavedCouplers // IEEETransactionsonMicrowaveTheoryandTechniques. 2014. V. 62. № 6. P. 1322−1329.
  11. Skobelev S.P.PhasedArrayAntennaswithOptimizedElementPatterns. Norwood. MA. USA. ArtechHouse. 2011.
  12. Skobelev S.P., Eom S.Y., Park H.K.Shapingofflat-toppedelementpatternsinaplanararrayofcircularwaveguidesusingamultilayereddiskstructure. PartI: Theoryandnumericalmodeling // IEEETransactionsonAntennasandPropagation. 2003. V. 51. № 5. P. 1040−1047.
  13. Eom S.Y., Park H.K., Jeon S.I., Choi J.I., Skobelev S.P., Ganin S.A., Shubov A.G., Shishlov A.V.Shapingofflat-toppedelementpatternsinaplanararrayofcircularwaveguidesusingamultilayereddiskstructure. PartII: Experimentalstudyandcomparison // IEEETransactionsonAntennasandPropagation. 2003. V. 51. № 5. P. 1048−1053.


June 24, 2020
May 29, 2020

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio