Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS

Тел.: +7 (495) 625-9241


Determination of metal coordination compounds by laser-induced electron transfer desorption/ionization in negative ionization mode


A.S. Borodkov - Ph. D. (Chim.), Research Scientist, «Energomashtekhnika» Ltd; Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences, Moscow, Russia E-mail: I.I. Kuzmin - Junior Research Scientist, «Energomashtekhnika» Ltd; Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences, Moscow, Russia E-mail: A.A. Grechnikov - Ph. D. (Chim.), Head of laboratory, «Energomashtekhnika» Ltd; Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences, Moscow, Russia Email: Ya.O. Simanovsky - Ph.D. (Phys.-Math.), Senior Research Scientist, A.M. Prokhorov General Physics Institute of Russian Academy of Sciences, Moscow, Russia E-mail:

The detection of biologically active metal coordination compounds by laser-induced electron transfer desorption/ionization (LETDI) in negative ionization mode was investigated. In LETDI, the analyte is deposited on the surface of a specially-designed solid substrate, followed by the exposure of the surface to pulsed laser radiation. The effect of irradiation produces molecular ions of the analytes, which are then desorbed from the surface and detected in a mass spectrometer. Previously reported results were obtained with the chemical compounds, which are detected in positive ionization mode of LETDI. In this paper, LETDI technique was tested for the production of negatively charged ions. Cisplatin (diamminedichloroplatinum, a widely used anticancer drug), lutetium complex with crown ether- substituted phthalocyanine and copper complex with dithizone (a well-known organic reagent for the extraction and concentration of metal ions) were used as test analytes. The forth harmonic of the radiation of the Nd:YAG laser (the wavelength 263 nm, the pulse duration 4.5 ns) was used for laser desorption/ionization. In order to find the optimal parameters of laser system, the analyte ion yields were measured as a function of laser fluence for various solid substrates, including stainless steel, graphite, silicon and titanium dioxide. The comparison of these substrates at optimal laser fluencies showed that silicon substrates possessed the best ionization properties. For all studied metal complexes, mass spectra were recorded and identified in negative ionization mode. Mass spectra are dominated by the molecular ions; however, the degree of fragmentation is higher as compared with positive ionization mode. The observed isotope distributions for the molecular ions coincide with the calculated distributions with a good accuracy. Calibration curves were constructed as a function of the total ion signal (including fragment ions and adduct ions) on the actual amount of analyte deposited onto the silicon substrate. Calibration curves were found to be linear in the range of at least two orders of magnitude with limits of detection of studied metal complexes in the range of 1 – 25 pg. It is shown that negative ionization mode of LETDI allows for an expansion of the range of compounds determined by laser desorption/ionization.


  1. Dupre M., Coffinier Y., Boukherroub R., Cantel S., Martinez J., Enjalbal C. Laser desorption ionization mass spectrometry of protein tryptic digests on nanostructured silicon plates // J. Proteomics. 2012. V. 75. № 7. P. 1973 – 1990.
  2. Coffinier Y., Nguyen N., Drobecq H., Melnyk O., Thomy V., Boukherroub R. Affinity surface-assisted laser desorption/ionization mass spectrometry for peptide enrichment // Analyst. 2012. V. 137. № 23. P. 5527 – 5532.
  3. Shenar N., Cantel S., Martinez J., Enjalbal C. Comparison of inert supports in laser desorption/ionization mass spectrometry of peptides: pencil lead, porous silica gel, DIOS-chip and NALDI™ target // Rapid Commun. Mass Spectrom. 2009. V. 23. № 15. P. 2371 – 2379.
  4. Nakai K., Kawasaki H., Yamamoto A., Arakawa R., Grass R.N., Stark W.J. Sensitive detection of aromatic hydrophobic compounds in water and perfluorooctane sulfonate in human serum by Surface-Assisted Laser Desorption/Ionization Mass Spectrometry (SALDI-MS) with amine functionalized graphene-coated cobalt nanoparticles. Mass Spectrometry. 2014. V. 3. № 1.
  5. Seo H., Kim S., Kim J.I., Kang H., Jung W., Yeo W.S. Ultrasensitive detection of microRNAs using nanoengineered micro gold shells and laser desorption/ionization time-of-flight MS // Anal. Biochem. 2013. V. 434. № 1. P. 199 – 201.
  6. Kraj A., Jarzebinska J., Gorecka-Drzazga A., Dziuban J., Silberring J. Identification of catecholamines in the immune system by desorption/ionization on silicon // Rapid Commun. Mass Spectrom. 2006. V. 20. № 13. P. 1969 – 1972.
  7. Grechnikov A.A., Kubasov A.E., Georgieva V.B., Borodkov A.S., Nikiforov S.M., Simanovsky Ya.O., Alimpiev S.S. Rapid screening of pharmaceutical drugs using thermal desorption – SALDI mass spectrometry // J.Phys.: Conf.Ser. 2012. V. 398. P. 012033(6).
  8. Chen P.S., Cheng Y.H., Lin S.Y., Chang S.Y. Determination of immunosuppressive drugs in human urine and serum by surface-assisted laser desorption/ionization mass spectrometry with dispersive liquid-liquid microextraction // Anal. Bioanal. Chem. 2016. V. 408. № 2. P. 629 – 637.
  9. Yanes O., Woo H.K., Northen T.R., Oppenheimer S.R., Shriver L., Apon J., Apon J., Estrada M.N., Potchoiba M.J., Steenwyk R., Manchester M., Siuzdak G. Nanostructure initiator mass spectrometry: tissue imaging and direct biofluid analysis // Anal. Chem. 2009. V. 81. № 8. P. 2969 – 2975.
  10. Rudd D., Ronci M., Johnston M. R., Guinan T., Voelcker N.H., Benkendorff K. Mass spectrometry imaging reveals new biological roles for choline esters and Tyrian purple precursors in muricid molluscs // Sci. Rep. 2015. V. 5. P. 13408 (13).
  11. Grechnikov A.A., Borodkov A.S., Alimpiev S.S., Nikiforov S.M., Simanovskijj JA.O. Osnovnost v gazovojj faze – parametr, opredeljajushhijj ehffektivnost lazernojj desorbcii-ionizacii s kremnievykh poverkh­nostejj // ZHurnal analiticheskojj khimii. 2013. T. 68. № 1. C. 22 – 29; Grechnikov A. A., Borodkov A.S., Alimpiev S.S., Nikiforov S.M., Simanovsky Ya.O. // J. Analyt. Chem. 2013. V. 68. № 1. P. 19 – 26.
  12. Alimpiev S.S., Grechnikov A.A., Nikiforov S.M. Novye podkhody v lazernojj mass-spektrometrii organicheskikh obektov // Uspekhi fizicheskikh nauk. 2015. T. 185. № 2. S. 207 – 212; Alimpiev S.S., Grechnikov A.A., Nikiforov S.M. New approaches to the laser mass spectrometry of organic samples // Physics–Uspekhi. 2015. V. 58. № 2. P. 191 – 195.
  13. Grechnikov A., Nikiforov S., Strupat K., Makarov A. Determination of rhenium and osmium complexes by surface-assisted laser desorption/ionization coupled to Orbitrap mass analyzer // Anal. Bioanal. Chem. 2014. V. 406. № 13. P. 3019 – 3023.
  14. Grechnikov A.A., Borodkov A.S., Nikiforov S.M., Kuzmin I.I. Lazernaja desorbcija/ionizacija s perenosom ehlektrona dlja vysokochuvstvitelnogo mass-spektro­metricheskogo opredelenija kompleksnykh soedinenijj metallov // Tekhnologii zhivykh sistem. 2016. T. 13. № 3. S. 66 – 74.
  15. Ivanchev G. Ditizon i ego primenenie: Per. s nem. M.: Izd-vo inostr. lit. 1961. 450 s.
  16. Djorffel K. Statistika v analiticheskojj khimii. M.: Mir. 1994. 268 s.


Sept. 2, 2020
Aug. 27, 2020
June 24, 2020

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio