Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Spectral analysis of satellite radar images of the Earth

Keywords:

L.V. Labunets – Dr.Sc.(Eng.), Professor, Department «Information Processing and Control Systems», Department «Autonomous information and operating systems», Bauman Moscow State Technical University
E-mail: labunets@bmstu.ru; llv_bmstu@labnet.ru
I.M. Akhmetov – Post-graduate Student, Department «Information Processing and Control Systems», Bauman Moscow State Technical University; Head of Department, State corporation «ROSKOSMOS»
E-mail: akhmetov.im@roscosmos.ru; akhmetov.im@gmail.com


The article presents a noncanonical spectral model of a multidimensional homogeneous Gaussian random field in the form of a sum of statistically independent harmonics with random spatial frequencies and amplitudes. The description of the energy spectrum of this model by a finite mixture of standard spectra removes the rigid restriction to the required large volume of experimental data, ensures the possibility of applying effective algorithms for statistical field simulation, which in turn does not lead to a significant increase in the amount of calculations with increasing the dimensionality of the data. The use of a modified EM algorithm for identifying the parameters of the model of standard spectra makes it possible to synthesize, in a numerical experiment, fields with isotropic and anisotropic correlation-spectral characteristics, which are adequate to the experimental data.
On the example of the problem of spectral analysis of images obtained as a result of remote sensing of the Earth's surface by satellite radars with a synthetized antenna aperture, the method of smoothing the periodogram spectral estimation using its multiple-scale decomposition in the basis of the discrete wavelet transformation is verified. As a result of this approach, parametric estimates of the energy spectra of isotropic and anisotropic structural components were obtained, which provided a statistical simulation of radio images that was efficient in terms of computational cost.

References:
  1. Bondur V.G., Zamshin V.V. Kosmicheskij radiolokaczionny’j monitoring morskix akvatorij v rajonax doby’chi i transportirovki uglevodorodov // V knige «Ae’rokosmicheskij monitoring ob’‘ektov neftegazovogo kompleksa» / Pod red. V.G. Bondura. M.: Nauchny’j mir. 2012. 558 s.
  2. Dikinis A.V., Ivanov A.Yu., Karlin L.N. Atlas annotirovanny’x radiolokaczionny’x izobrazhenij morskoj poverxnosti, poluchenny’x kosmicheskim apparatom «ALMAZ 1». M.: GEOS. 1999. 116 s.
  3. Shaly’gin A.S., Palagin Yu.I. Prikladny’e metody’ statisticheskogo modelirovaniya. L.: Mashinostroenie. 1986. 320 s.
  4. Labunecz L.V. Randomizirovanny’e spektral’ny’e modeli mnogomerny’x sluchajny’x polej: ucheb. posobie. M.: MGTU im. N.E’. Baumana. 2005. 68 s.
  5. Zagorodnikov A.A. Radiolokaczionnaya s’‘emka morskogo volneniya s letatel’ny’x apparatov. L.: Gidrometeoizdat. 1978. 315 s.
  6. Yanutsh D.A. Deshifrirovanie ae’rokosmicheskix snimkov. M.: Nedra. 1991. 240 s.
  7. Ermakov S.M., Mixajlov G.A. Kurs statisticheskogo modelirovaniya. M.: Nauka. 1982. 296 s.
  8. De Groot M.H. Optimal Statistical Decisions. New York: McGraw-Hill Company. 1970. 391 p.
  9. Tou J.T., Gonzalez R.C. Pattern Recognition Principle. London: Addison - Wesley P.C. 1974. 411 p.
  10. Ajvazyan S.A., Buxshtaber V.M., Enyukov N.S., Meshalkin L.D. Prikladnaya statistika: Klassifikacziya i snizhenie razmernosti: Sprav. izd-e. M.: Finansy’ i statistika. 1989. 607 s.
  11. Labunecz L.V. Randomizacziya mnogomerny’x raspredelenij v metrike Maxalanobisa // Radiotexnika i e’lektronika. 2000. T. 45. № 10. S. 1214−1225.
  12. http://www.intelligence-airbusds.com/en/5751-image-detail?img=1779& search=gallery&market=0&world=0&sensor=0&continent = 0& keyword=terraSAR%20muzafarabad#.WalAhNSLSt9.
  13. Labunecz L.V., Simakov V.V. Strukturny’j analiz signalov v sistemax podpoverxnostnoj radiolokaczii // E’lektromagnitny’e volny’ i e’lektronny’e sistemy’. 2013. T. 18. № 8. S. 49−68.
  14. Labunecz L.V., Labunecz N.L., Chizhov M.Yu. Rekurrentny’e statistiki nestaczionarny’x vremenny’x ryadov // Radiotexnika i e’lektronika. 2011. T. 56. № 12. S. 1468−1489.
  15. Fukunaga K. Introduction to Statistical Pattern Recognition. New York: Academic Press. 1972. 368 p.
  16. Geist J.M. Computer Generation of Correlated Gaussian Random Variables // Proceedings of the IEEE. 1979. V. 67. № 5. P. 188−189.
May 29, 2020

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio