Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Kinematic hypotheses of various approximations in coupled problems of thermodynamics taking into account the contact interaction

Keywords:

E.Yu. Krylova – Ph.D.(Phys.-Math.), Associate Professor, Department of Mathematical and Computer Modeling, Saratov State University named after N.G. Chernyshevsky
E-mail: kat.krylova@bk.ru
I.V. Papkova – Ph.D.(Phys.-Math.), Associate Professor, Department «Mathematics and Modeling», Yuri Gagarin State Technical University of Saratov
E-mail: ikravzova@mail.ru
O.A. Saltykova – Ph.D.(Phys.-Math.), Associate Professor, Department «Mathematics and Modeling», Yuri Gagarin State Technical University of Saratov
E-mail: olga_a_saltykova@mail.ru
V.A. Krysko – Dr.Sc.(Eng.), Head of Department «Mathematics and Modeling», Yuri Gagarin State Technical University of Saratov
E-mail: tak@sun.ru


In the article mathematical models of the contact interaction of two geometrically nonlinear beams with a small gap, taking into account the kinematic hypotheses of different approximations (first approximation – Euler-Bernoulli, second approximation -Timoshenko, third approximation - Pelekh-Sheremetyev) were constructed. The beam structure is in the temperature field. In the general case, the temperature field is different for each beam of the packet. There are no restrictions imposed on the temperature distribution over the thickness of the packet. Two-dimensional heat conduction equations are considered taking into account the coupling of the temperature and deformation fields. The resolving equations of motion, the boundary and initial conditions were obtained from the Ostrogradsky-Hamilton energy principle. The transverse distributed alternating stress given by the harmonic law is applied to the upper beam of the packet. Contact interaction is accounted for by the Cantor model. The tasks are highly nonlinear. The geometric nonlinearity of beams according to the Karman model and constructive nonlinearity (contact between beams) are taken into account in constructing a mathematical model. The system of partial differential equations reduces to the ODE system by the method of finite differences of the second order. The resulting system is solved by several methods of Runge-Kutta type of various orders. Two cases are considered. In each of the cases various kinematic hypotheses are adopted for different beams of the packet. For the first beam, the hypothesis of Bernoulli-Euler was adopted in the first case, in the second - Timoshenko. For the beam - the «substrate», which is not affected by the external normal load, the hypotheses of Pelekh-Sheremetev are accepted in both cases. A study is made of the convergence of the solution methods with respect to the spatial coordinate, depending on the choice of the number of fission segments. As well as convergence, depending on the method of solving and step on the time coordinate. The truth of the chaotic oscillations of the system under consideration is established on the basis of the chaos definition by Gulik. For this purpose, the spectra of Lyapunov exponents were constructed using three different methods (Wolff, Kants, and Resenstein). On the basis of the study, we can speak of the convergence of the results at 400 points of the interval along the spatial coordinate obtained by the Runge-Kutta method of the eighth order (Prince Dormand). The investigation of nonlinear dynamics and contact interaction of beam structures of dependence on selected hypotheses is carried out. It was revealed that when the beams of a packet come into contact, the nature of the oscillations of the beams becomes chaotic, regardless of the selected hypotheses. In the conducted experiments there is a phenomenon of chaotic frequency synchronization.

References:
  1. Farbod Alijani, Marco Amabili. Non-linear vibrations of shells: A literature review from 2003 to 2013 // International Journal of Non-Linear Mechanics, Elsevier. 2014.
  2. Sinichkina A.O., Kry’lova E.Yu., Miczkevich S.A., Kry’s’ko V.A. Dinamika gibkix balok pri dejstvii udarny’x nagruzok s uchetom belogo shuma // Problemy’ prochnosti i plastichnosti. 2016. T. 78. № 3. S. 280−288.
  3. Kry’s’ko V.A., Zhigalov M.V., Kry’lova E.Yu., Papkova I.V. Metod ustanovleniya v nelinejny’x zadachax balok i plastin s uchetom lokal’nosti nagruzheniya // Vestnik Saratovskogo gosudarstvennogo texnicheskogo universiteta. 2012. T. 2. № 1 (65). S. 7−17.
  4. Awrejcewicz J, Krysko A.V., Papkova I.V., Krylova E.Y., Krysko V.A. Chaotic dynamics of flexible beams driven by external white noise // Mechanical Systems and Signal Processing. 2016. T. 79. S. 225−253.
  5. Kry’s’ko V.A., Kry’lova E.Yu., Salty’kova O.A., Papkova I.V. Kontaktnoe vzaimodejstvie dvux gibkix sloisty’x balok, naxodyashhixsya pod dejstviem znakoperemennoj nagruzki i additivnogo belogo shuma // Materialy’ XI Mezhdunar. konf. po neravnovesny’m proczessam v soplax i struyax (NPNJ'2016). Moskovskij aviaczionny’j institut (naczional’ny’j issledovatel’skij universitet). 2016. S. 352−353.
  6. Qin Y., Ma Z. Global Well-Posedness and Asymptotic Behavior of the Solutions to Non-classical Thermo(visco)elastic Models. 2016. P. 1−200.
  7. Jafarsadeghi-Pournaki I., Rezazadeh G. Parametric thermally induced vibration of an electrostatically deflected FGM micro-beam // International Journal of Applied Mechanics. 2016. 8(8). 1650092.
  8. Antipov Y.A., Dickinson B.T. Dynamic problem of coupled thermoelasticity for a thin composite structure // Mathematics and Mechanics of Solids 1. 2017. P. 1−17. https://doi.org/10.1177/1081286517716981.
  9. Entezari A., Filippi M., Carrera E. Unified finite element approach for generalized coupled thermoelastic analysis of 3D beam-type structures. Part 1. Equations and formulation // Journal of Thermal Stresses. 2017. 40(11). P. 1386−1401.
  10. Filippi M., Entezari A., Carrera E. Unified finite element approach for generalized coupled thermoelastic analysis of 3D beam-type structures. Part 2. Numerical evaluations // Journal of Thermal Stresses. 2017. 40(11). P. 1402−1416.
  11. Hosseini S.M. Shock-induced nonlocal coupled thermoelasticity analysis in a MEMS/NEMS beam resonator based on Green–Naghdi theory: A meshless implementation considering small-scale effects // Journal of Thermal Stresses. 2017. 40(9). P. 1134−1151.
  12. Taati E., Molaei Najafabadi M., Basirat Tabrizi H. Size-dependent generalized thermoelasticity model for Timoshenko microbeams // Acta Mechanica. 2014. 225(7). P. 1823−1842.
  13. Kry’lova E.Yu., Kutepov I.E., Papkova I.V., Kry’s’ko V.A. Matematicheskoe modelirovanie kontaktnogo vzaimodejstviya pologix geometricheski nelinejny’x balok Bernulli-E’jlera v ramkax svyazannoj zadachi termodinamiki // Nelinejny’j mir. 2016. T. 14. № 7. S. 36−46.
  14. Ren´e Lozi. Can we trust in numerical computations of chaotic solutions of dynamical systems?. World Scientific Series on Nonlinear Science // World Scientific. 2013. Topology and Dynamics of Chaos In Celebration of Robert Gilmore’s 70th Birthday. 84. P. 63−98.
  15. Denny Gulick. Encounters with Chaos. New York: McGraw-Hill. 1992.
  16. Sheremet’ev M.P., Pelex B.L. K postroeniyu utochnennoj teorii plastin // Inzhenerny’j zhurnal. 1964. T. 4. № 3. S. 34−41.
  17. Timoshenko S.P. On the correction for shear of differential equation for transverse vibration of prismatic bar // Philosophical Magazin. 1921. 41. 36. P. 744−746.
  18. Euler L. Sur la force des colones // Memories de L’Academie de Berlin. 1757. V. 13. P. 252−282.
  19. Ostrogradsku M. Mem. de l'Acad, des Sci. de St-Petersbourg. 1850. T. 8. № 3. P. 33−48.
  20. Ambarczumyan S.A. Teoriya anizotropny’x plastin. M.: Nauka. 1967.
  21. Reissner E. On transverse vibration of thin shallow shells // Quarterly of Appl. 1955. V. 13. № 2. P. 169−170.
  22. Kantor B.Ya., Bogaty’renko T.L., Metod resheniya kontaktny’x zadach nelinejnoj teorii obolochek // Dokl. AN USSR. Ser. A. 1986. № 1. S. 18−21.
  23. Erofeev N.P., Zaxarov V.M., Kry’lova E.Yu., Kry’s’ko V.A., Papkova I.V. Dissipativnaya dinamika geometricheski nelinejnoj balki Bernulli–E’jlera pri dejstvii poperechnoj znakoperemennoj nagruzki s uchetom belogo shuma // Nelinejny’j mir. 2015. № 7. S. 57–64.
May 29, 2020

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio