Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Simulation of air flow for simulating external conditions during testing of industrial products

DOI 10.18127/j20700814-201809-06

Keywords:

D.A. Oparin - Senior Lecturer, Department «Electrical Engineering and Electrical Mechanics»,  Perm National Research Polytechnic University
E-mail: dlowarp@gmail.com
I.V. Bahirev - Senior Lecturer, Department «Electrical Engineering and Electrical Mechanics»,  Perm National Research Polytechnic University
E-mail: bahirevy@mail.ru
B.V. Kavalerov - Dr.Sc.(Eng.), Associate Professor, Head of Department «Electrical Engineering and Electrical Mechanics»,  Perm National Research Polytechnic University
E-mail: kbv@pstu.ru
G.A. Kilin - Master, Senior Lecturer, Department «Electrical Engineering and Electrical Mechanics», Perm National Research Polytechnic University
E-mail: thisisforasm@rambler.ru


The article describes a number of tests of industrial products, in which there may be a need to test these products in a stream of air. To create a flow, a test facility is used that has the ability to create a flow of air with the necessary characteristics (pressure, temperature, speed, air flow and other indicators). To obtain the required air characteristics, it is proposed to use a mathematical model of air flow. This mathematical model links the main air flow figures obtained with the regulating organs of the installation (the position of the air dampers, the fan speed, the temperature of the heating elements and other external influences). This mathematical model makes it possible to calculate the required control actions for obtaining specified air characteristics, which facilitates the creation of control systems for test installations, in addition, its use will be useful in solving diagnostic problems, training operators, and in carrying out a wide range of scientific research. In the article, an example of one of the possible variants of linking a test setup shows the process of obtaining such a mathematical model consisting of four successive sections, taking into account the assumptions made on the basis of a priori information on the physics of the processes in progress.
On work the following conclusions are made.
Tests in the air flow with the required characteristics are necessary for testing different products at all major stages of production. It is not always necessary and possible to use a full range of air parameters, therefore, simplified versions of test facilities that support only the necessary air parameters in the area of the test object are often used. To control the airflow pa-rameters, it is necessary to isolate the characteristics required to maintain these characteristics. The process of regulating cha-racteristics can be performed using an automatic control system, which can be constructed using the created airflow model, which is used in the tests. Air flow, described by the model, can be changed by means of regulation (dampers, discharge mechanism, heaters), so that it is possible to control the air flow parameters as necessary. Thus, the airflow model takes into account, among other things, management tools, and hence it can be used in the future for preliminary research of air flow control processes, diagnostics of the test facility, development of test programs, training of personnel and further scientific research. To create the model, generally accepted simplifications were adopted, which, under conditions of a wide range of scientific studies, will not significantly affect the accuracy of the results obtained. The proposed structure of the mathematical model is based on a priori information about the physics of airflow processes, its consistency and adequacy is confirmed by mathematical modeling, taking into account expert assessments of the results obtained for the main operating modes. The error of the model in comparison with the experimental data does not exceed 5% in the standard test modes. The next stage of the research is the theoretical substantiation of identification of the parameters of the obtained model, since this task requires extensive experimental studies to justify the identification methods used, to improve the accuracy and final estimation of the accuracy of the model obtained in all the main modes, both in statics and in dynamics, taking into account in a variety of external disturbances.

References:
  1. Adgamov R.I., Berxeev M.M., Zalyaev I.A. Avtomatizirovanny’e ispy’taniya v aviastroenii. M.: Mashinostroenie. 1989. 232 s.
  2. Doroshenko S.A., Doroshenko A.V., Orexov G.V. Opredelenie vetrovoj nagruzki na trexmerny’e konstrukczii s pomoshh’yu modelirovaniya v ae’rodinamicheskoj trube // Vestnik MGSU. 2012. № 7. S. 69−74.
  3. Zhamalov R.R., Korolev E.V., Kotin A.I. Ae’rodinamicheskie truby’ kak instrument issledovaniya // Vestnik NGIE’I. 2012. № 12. S. 54−62.
  4. Lebsak V.A., Ly’zhin O.V. Matematicheskaya model’ perexodny’x proczessov v kompressorny’x ae’rodinamicheskix trubax // Ucheny’e zapiski CzAGI. 1985. T. 16. № 2.
  5. Fevralev A.A. Issledovanie perexodny’x proczessov v gazoprovodax. Opredelenie prichin avarii s pomoshh’yu modeli.
  6. Panferov V.I., Fevralev A.A. Chislennoe modelirovanie perexodny’x proczessov v gazoprovodax // Vestnik Yuzhno-Ural’skogo gosudarstvennogo universiteta. Ser.: Stroitel’stvo i arxitektura. 2008. № 25(125).
  7. Tatosov A.V. Sxema rascheta nestaczionarny’x techenij gaza v pnevmaticheskoj sisteme // Vy’chislitel’ny’e texnologii. 2004. T. 9. № 4.
  8. Venikov V.A., Venikov G.V. Uchebnik dlya vuzov po speczial’nosti «Kibernetika e’lektricheskix sistem». Izd. 3-e, pererab. i dop. M.: Vy’sshaya shkola. 1984. 439 s.
  9. Blagov E’.U., Ivniczkij B.Ya. Drossel’no-reguliruyushhaya armatura TE’S i AE’S. M.: E’nergoatomizdat. 1990.
  10. Lukas V.A. Teoriya avtomaticheskogo upravleniya. M.: Nedra. 1990. 416 s.
  11. Kilin G.A., Odin K.A., Kavalerov B.V. Programmny’j kompleks dlya polucheniya matematicheskix modelej gazoturbinny’x e’lektrostanczij // Sistemy’ upravleniya i informaczionny’e texnologii. 2015. T. 59. № 1.1. S. 145−148.
  12. Kilin G.A. Poluchenie nelinejnoj matematicheskoj modeli sistemy’ «gazoturbinnaya ustanovka – sinxronny’j generator» s pomoshh’yu identifikaczii // Vestnik IzhGTU im. M.T. Kalashnikova. 2015. № 2. S. 87−91.
  13. Kilin G.A., Kavalerov B.V., Baxirev I.V., Povarniczy’n A.Yu. Identifikacziya gazoperekachivayushhego agregata dlya model’nogo ispy’taniya i nastrojki sistemy’ upravleniya // Vestnik Voronezhskogo gosudarstvennogo universiteta. Ser.: Sistemny’j analiz i informaczionny’e texnologii. 2014. № 1. S. 65−71.
  14. Kavalerov B.V., Kilin G.A., Baxirev I.V. Algoritm poiska nelinejnoj modeli GTU dlya privoda GPA // Vestnik IzhGTU im. M.T. Kalashnikova. 2014. № 2. S. 133−136.
  15. Kavalerov B.V., Kilin G.A., Odin K.A. Vserezhimnaya by’stroreshaemaya model’ gazoturbinnoj gazoperekachivayushhej ustanovki // Vestnik Yugo-Zapadnogo gosudarstvennogo universiteta. Ser. «Texnika i texnologii». 2013. S. 42.
  16. Kavalerov B.V., Odin K.A., Kilin G.A. Avtomatizirovannoe formirovanie uproshhenny’x modelej GTU dlya mnogofunkczional’ny’x trenazherny’x kompleksov // E’nergetika. 2013. № 1. S. 89−97.
  17. Kilin G.A., Kavalerov B.V., Odin K.A. Vy’bor matematicheskix modelej dlya gazoturbinny’x ustanovok razlichny’x versij primeneniya.
  18. Vestnik Permskogo naczional’nogo issledovatel’skogo politexnicheskogo universiteta. E’lektrotexnika, informaczionny’e texnologii, sistemy’ upravleniya. 2013. № 8. S. 155−165.
  19. Kilin G.A., Kavalerov B.V., Odin K.A. Identifikacziya MT Capstone dlya model’nogo ispy’taniya i nastrojki sistem upravleniya // Materialy’ VI Vseros. nauchno-texnich. internet-konf. «E’nergetika. Innovaczionny’e napravleniya v e’nergetike. CALS-texnologii v e’nergetike». Izd-vo PNIPU. 2012. S. 168−174.
  20. Kilin G.A., Kavalerov B.V., Odin K.A. Avtomatizacziya ispy’tanij e’lektroe’nergeticheskix gazoturbinny’x ustanovok posredstvom programmnogo modeliruyushhego kompleksa // E’nergetika. 2012. № 1. S. 225−236.
  21. Kilin G.A., Kavalerov B.V., Odin K.A. Postroenie by’stroreshaemoj modeli GTU dlya avtomatizirovannoj nastrojki sistem upravleniya // Nauchny’e issledovaniya i innovaczii. 2012. T. 6. № 1. S. 157−164.
June 24, 2020
May 29, 2020

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio