Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS

Тел.: +7 (495) 625-9241


Microwave imaging in media with irregular surface

DOI 10.18127/j20700784–201811–01


V.V. Razevig - Ph.D. (Eng.), Senior Research Scientist, Bauman Moscow State Technical University
A.S. Bugaev - Dr.Sc. (Phys.-Math.), Professor, Academician, Head of Department, Moscow Institute of Physics and Technology
A.V. Zhuravlev - Ph.D. (Eng.), Leading Research Scientist, Bauman
S.I. Ivashov - Ph.D. (Eng.), Head of Laboratory, Bauman Moscow State Technical University
M.A. Chizh - Junior Research Scientist, Bauman Moscow State Technical University

Microwave imaging is a technique for evaluation of hidden or embedded objects in a optically opaque structure (or media) using elec-tromagnetic waves in microwave regime. Microwave imaging technique gives the electrical (i.e., electrical and magnetic property dis-tribution) and geometrical (i.e., shape, size and location) parameters of an imaged object by solving a nonlinear inverse problem. This technique operates by recording a microwave hologram which contains information about the magnitude and the phase of the wave reflected by an object. Once recorded, the hologram can be reconstructed digitally using one among many hologram reconstruction methods.
Usually reconstruction of microwave holograms is performed by a back propagation method with rather simple model of the medium, such as the model of a homogeneous half-space with plane interface, or the model of layered medium. If the medium has non-planar interface which does not allow moving the radar sensor directly over it, a flat sheet of radio transparent material or two-coordinate electromechanical scanner can be used for scanning and data acquisition. This allows moving the radar sensor in close proximity to the surface and obtaining radar samples belonging to a plane. In these conditions, the hologram reconstruction is complicated by reflections from the irregular surface which usually dominate the reflections from the subsurface object. Surface reflections can be suppressed on the reconstructed image if the depth of the object is greater than the radar system depth resolution, which is defined by the bandwidth of the sounding signal. If the buried object is closer to the interface and the bandwidth is not wide enough, using a simple model for the medium doesn’t allow filtering the surface reflections. In this case their influence can be suppressed by using the reconstruction method that takes into account information about the surface geometry.
In this paper the possibility of using an RGB-D video sensor for registering the depth map of the investigated surface is considered. The microwave image is reconstructed by a modified back propagation method taking into account the registered depth map of the surface. The efficiency of this approach is illustrated by the experiments with subsurface holographic radar. The microwave images reconstructed with new approach are compared with the results obtained by traditional back propagation methods in which the medium is considered homogeneous with planar interface.

  1. Ivashov S.I., Razevig V.V., Vasiliev I.A., Zhuravlev A.V., Bechtel T.D., and Capineri L. Holographic Subsurface Radar of RASCAN Type: Development and Applications // IEEE Journal of Selected Topics in Earth Observations and Remote Sensing. December 2011. V. 4. Is. 4. Р. 763–778.
  2. Catapano I., Crocco L., Isernia T. On simple methods for shape reconstruction of unknown scatterers // IEEE Trans. Antennas Propag. May 2007. V. 55. № 5. Р. 1431–1436.
  3. Razevig V. V., Bugaev A. S., Ivashov S. I., Vasil'ev I. A., ZHuravlev A. V. Vliyanie shiriny polosy chastot na kachestvo vosstanovleniya podpoverhnostnyh radiogologramm // Uspekhi sovremennoj radioehlektroniki. 2012. № 3. S. 3–13.
  4. Wang J.G., Zhao Z.Q., Nie Z.P., and Liu Q.H. Subsurface Imaging 3-D Objects in Multilayered Media by Using Electromagnetic Inverse Scattering Series Method (EISSM) // Progress In Electromagnetics Research Symposium Proceedings. Guangzhou, China. Aug. 25–28 2014. Р. 1041–1045.
  5. Internet-magazin otdelochnyh materialov Dekor TD. (data obrashcheniya: 16.10.2018).
  6. Altuncu Y., Akduman I., Yapar A. Detecting and locating dielectric objects buried under a rough interface // IEEE Geosci. Remote Sens. Lett. Apr. 2007. V. 4. № 2. Р. 251–255.
  7. El-Shenawee M. Remote sensing of penetrable objects buried beneath two-dimensional random rough surfaces by use of the Mueller matrix elements // J. Opt. Soc. Amer. A. Opt. Image Sci. Vis. Jan. 2003. V. 20. № 1. Р. 183–194.
  8. El-Shenawee M. Polarimetric scattering from two-layered two dimensional random rough surfaces with and without buried objects // IEEE Trans. Geosci. Remote Sens. Jan. 2004. V. 42. № 1. Р. 67–76.
  9. O’Neill K. Broadband bistatic coherent and incoherent detection of buried objects beneath randomly rough surfaces // IEEE Trans. Geosci. Remote Sens. Mar. 2000. V. 38. № 2. Р. 891–898,
  10. Cmielewski O., Saillard M., Tortel H. Detection of buried objects beneath a rough surface // Waves Random Complex Media. Nov. 2006. V. 16. № 4. Р. 417–431.
  11. Zhu X., Zhao Z., Yang W., Zhang Y., Nie Z., and Liu Q.-H. Iterative time-reversal mirror method for imaging the buried object beneath rough ground surface // Progr. Electromagn. Res. Jul. 2011. V. 117. Р. 19–33.
  12. Wang Y., Longstaff I.D., Leat C.J. SAR imaging of buried objects from MoM modelled scattered filed // Proc. Inst. Elect. Eng. Radar Sonar Navig. Jun. 2001. V. 148. № 3. Р. 167–172.
  13. Monte L., Soldovieri F., Akduman I., Wicks M. Imaging under irregular terrain using RF tomography and numerical green functions // 2010 IEEE Antennas and Propagation Society International Symposium. Р. 1–4.
  14. Gurbuz T.U., Aslanyurek B., Karabulut E.P., Akduman I. An Efficient Nonlinear Imaging Approach for Dielectric Objects Buried Under a Rough Surface // IEEE Trans. Geosci. Remote Sens. May 2014. V. 52. № 5. Р. 3013–3022.
  15. Sheen D.M., McMakin D.L., Hall T.E. Three-dimensional millimeter-wave imaging for concealed weapon detection // IEEE Transactions on Microwave Theory and Techniques. 2001. V. 49. № 9. P. 1581–1592.
  16. Kinect. (data obrashcheniya: 16.10.2018).
  17. Razevig V.V. Modelirovanie processa registracii radiogologramm ob"ektov slozhnoj formy radiolokatorami maloj i sverhmaloj dal'nosti // Nauka i obrazovanie: nauchno-tekhnicheskoe izdanie. 2014. № 6. S. 336–349.
  18. Balanis C.A. Antenna Theory: Analysis and Design. New York: Wiley. 2005. Р. 699–805.

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio