Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

The approach for metagraph calculus development

DOI 10.18127/j19997493-201803-06

Keywords:

Yu.E. Gapanyuk – Ph.D.(Eng.), Associate Professor, Department «Information Processing and Control Systems», Bauman Moscow State Technical University
E-mail: gapyu@bmstu.ru


The previously proposed approaches allowed to formalize the metagraph model in part, but did not allow to operate completely formally with the elements of the metagraph model. The main problem of describing the elements of a metagraph based on MIE is that MIE is not enough «atomic» structure. Predicate description allows one to present a metagraph model in text form, and the constituent parts of the predicate description are sufficiently «atomic». However, the predicate description does not provide information about what actions can be performed on the elements of the metagraph model. The data structure of the proposed calculus is a vertex-predicate. All calculus constructs are strings divided into left and right parts by an assignment operator that uses the equal sign. The construction operator is used to create new predicate vertices based on existing ones. The deletion operator is designed to remove the lower-level predicates from the higher-level predicates. The transitive deletion operator also removes all elements that lose logical integrity as a result of deletion. The replacement operator is used to change the metagraph structure. Thus, the proposed metagraph calculus allows to construct and modify the elements of the metagraph model.

References:
  1. Evin I.A. Vvedenie s teoriyu slozhny’x setej //Komp’yuterny’e issledovaniya i modelirovanie. 2010. T. 2. № 2. S. 121−141.
  2. Kuzneczov O.P., Zhilyakova L.Yu. Slozhny’e seti i kognitivny’e nauki // Sb. nauchny’x trudov XVII Vseros. nauchno-texnich. konf. «Nejroinformatika-2015». M.: MIFI. 2015. Ch. 1. S. 18.
  3. Anoxin K.V. Kognitom: gipersetevaya model’ mozga //  Sb. nauchny’x trudov XVII Vseros. nauchno-texnich. konf. «Nejroinformatika-2015». M.: MIFI. 2015. Ch. 1. S. 14−15.
  4. Chernen’kij V.M., Terexov V.I., Gapanyuk Yu.E. Predstavlenie slozhny’x setej na osnove metagrafov //   Sb. nauchny’x trudov XVIII Vseros. nauchno-texnich. konf. «Nejroinformatika-2016». M.: MIFI. 2016. Ch. 1.
  5. Samoxvalov E’.N., Revunkov G.I., Gapanyuk Yu.E. Ispol’zovanie metagrafov dlya opisaniya semantiki i pragmatiki informaczionny’x sistem // Vestnik MGTU im. N.E’. Baumana. Ser. «Priborostroenie». 2015. № 1. S. 83−99.
  6. Chernen’kij V.M., Terexov V.I., Gapanyuk Yu.E. Struktura gibridnoj intellektual’noj informaczionnoj sistemy’ na osnove metagrafov // Nejrokomp’yutery’: razrabotka, primenenie. 2016. № 9. S. 3−14.
  7. Gapanyuk Yu.E., Revunkov G.I., Fedorenko Yu.S. Predikatnoe opisanie metagrafovoj modeli danny’x // Informaczionno-izmeritel’ny’e i upravlyayushhie sistemy’. 2016. № 12. S. 122−131.
  8. Ivin A.A., Nikiforov A.L. Slovar’ po logike. M: Gumanitarny’j izd-ij czentr VLADOS. 1997. 384 s.
  9. Evin I.A. Vvedenie s teoriyu slozhny’x setej //Komp’yuterny’e issledovaniya i modelirovanie. 2010. T. 2. № 2. S. 121−141.

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio