Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Details of transforming a metagraph to a flat graph model

DOI 10.18127/j19997493-201803-07

Keywords:

I.V. Dunin – Master, Post-graduate Student, Department «Information Processing and Control Systems», Bauman Moscow State Technical University
E-mail: johnmoony@mail.ru
Yu.E. Gapanyuk – Ph.D.(Eng.), Associate Professor, Department «Information Processing and Control Systems», Bauman Moscow State Technical University
E-mail: gapyu@bmstu.ru
G.I. Revunkov – Ph.D.(Eng.), Associate Professor, Department «Information Processing and Control Systems», Bauman Moscow State Technical University
E-mail: revunkov@bmstu.ru


Metagraph model allows to describe both data connections and data hierarchical relations. Due to growth in data volumes and relations complexity, this model is promising. Transforming metagraph to simple graph is one of the ways to store and process it.
Metagraph includes metavertices, which can be interconnected via edges and include other metavertices and edges. When metagraph is transformed to a flat graph, edges of metagraph are transformed to graph vertices. Belonging to metavertex is stored as flat graph edge. Metagraph processing includes several specific operations. Usage of flat graph model and graph database allows to fetch metavertex subvertices in a single query. Deletion of metavertex must lead to deletion of connected edges and subvertices.

References:
  1. Martin Junghanns, André Petermann. Management and Analysis of Big Graph Data: Current Systems and Open Challenges. Leipzig University Database Research Group. 2016. 47 p.
  2. Oficzial’naya dokumentacziya proekta Neo4j. Rezhim dostupa: https://neo4j.com/docs/ (data obrashheniya: 21.09.2018).
  3. Oficzial’naya dokumentacziya proekta TitanDB. Rezhim dostupa: http://s3.thinkaurelius.com/docs/titan/1.0.0/ (data obrashheniya: 21.09.2018).
  4. Basu A., Blanning R. Metagraphs and Their Applications. Springer, Heidelberg. 2007.
  5. Ataky Tsham Mpinda, Lucas Cesar Ferreira. Evaluation of graph databases performace through index techniques // International Journal of Artificial Intelligence & Applications (IJAIA). 2015 V. 6. 12 p.
  6. Peter Macko, Margo Seltzer. Performance Introspection of Graph Databases. Harvard University. 2013. 10 p.
  7. Ian Robinson, Jim Webber. Graph Databases. O’Reilly Media, Inc. 2015. 238 p.
  8. Dejt K.Dzh. Vvedenie v sistemy’ baz danny’x. Izd. 8-e. M.: Vil’yams. 2006. 1328 s.
  9. Operacziya graphLookup v MongoDB. Rezhim dostupa https://docs.mongodb.com/manual/reference/operator/aggregation /graphLookup/ (data obrashheniya 21.09.2018).
  10. Gaurav Vaswani, Anuradha Bhatia. Graph Databases. An Overview // International Journal of Computer Science and Information Technologies. 2014. V. 5 (1). 4 p.

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio