Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Modified conditional fuzzy inference algorithm for multi-criteria alternative choice

DOI 10.18127/j19997493-201901-07

Keywords:

V.G. Chernov – Dr.Sc.(Econ.), Professor, Department «Computer Engineering and Control Systems», Vladimir State University named after A.&N. Stoletovs
E-mail: vladimir.chernov44@mail.ru


We consider a modification of the fuzzy conditional inference algorithm for solving problems of multi-criteria alternative choice, cha-racterized in that the solution is not based on the convolution of criteria in the conditional part of the rules, and on the basis of con-volution of particullar implications for the criteria.
When solving the problems of multi-criteria choice on a limited set of alternatives, the idea of constructing a decision rule is often used, which are trying to build understandable for the decision-maker. Since experts take part in the creation of the rules, the methods of their construction, taking into account the uncertainties of expert judgments, are of significant interest. This possibility is provided by the use of fuzzy inference rules, in which the evaluation of alternatives by criteria and conclusions are formulated in the form of fuzzy linguistic statements. In this case, the traditional solution of the problem involves the convolution of criteria in the conditional part of the rules, followed by the calculation of fuzzy implication. The use of the min operation in the convolution of criteria can lead to the fact that the alternative with only one low score will be attributed to the unwholesome. In addition, there may be situations where different alternatives will be evaluated against a different set of inference rules, which may adversely affect the quality of the solution. Another approach is proposed in which, instead of convolution of criteria, partial implications for the criteria included in the conditional part of the rules are calculated. In this case, the choice of the best alternative is based on the value of the power of fuzzy sets obtained in the calculation of partial implications. This decision takes into account the contribution of each criteria-based assessment of the alternative to the overall decision-making process.

References:
  1. Leonenkov A.V. Nechetkoe modelirovanie v srede MATLAB i fuzzyTECH. SPb.: BXVPeterburg. 2003. 736 s.
  2. Sedova N.A. Nechetkaya produkczionnaya model’ pervichnoj oczenki opasnosti stolknoveniya sudov // Mir transporta. 2015. T. 13. № 2(57). S. 200−206.
  3. Glushan’ V.M., Karelin V.P., Kuz’menko O.L. Nechetkie modeli i metody’ mnogokriterial’nogo vy’bora v intellektual’ny’x sistemax podderzhki prinyatiya reshenij // Izvestiya YuFU. Texnicheskie nauki. Tematicheskij vy’pusk «Iskusstvenny’j intellekt i nechetkie sistemy’» (Taganrog: Izd-vo TRTU). 2003. № 2(31). S. 106−112.
  4. Melixov A.N., Bershtejn L.S., Korovin S.Ya. Situaczionny’e sovetuyushhie sistemy’ s nechetkoj logikoj. M.: Nauka. 1990. 272 s.
  5. Traxtengercz E’A. Komp’yuternaya podderzhka prinyatiya reshenij: Nauchno-prakticheskoe izdanie. Seriya «Informatizacziya Rossii na poroge XXI veka». M.: SINTEG. 1998. 376 s.
  6. Bershtejn L.S., Karelin V.P., Czely’x A.N. Modeli i metody’ prinyatiya reshenij v integrirovanny’x intellektual’ny’x sistemax. Rostov-na-Donu: Izd-vo RGU. 1999. 276 s.
  7. Borisov A.N., Krumberg O.A., Fedorov I.P. Prinyatie reshenij na osnove nechetkix modelej: Primery’ ispol’zovaniya. Riga: Zinatne. 1990. 184 s.
  8. Babuska R., Verbruggen H.B. A new’ identification method for linguistic fuzzy models // Proceedings of the International Conference FUZZ-IEEE/IFES’95. Yokohama (Japan). 1995. P. 905−912.
  9. Perat A. Nechetkoe modelirovanie i upravlenie / Per. s anrl. Izd. 2-e. M.: BINOM. Laboratoriya znanij. 2013. 798 s.
  10. Chernov V.G. Modifikacziya algoritmov upravleniya, ispol’zuyushhix pravila nechetkogo uslovnogo vy’voda // Informaczionno-upravlyayushhie sistemy’. 2013. № 3(64). S. 23−29.
  11. Mamdani E.H. Application of fuzzy logic to approximate reasoning using linguistic systems // IEEE Trans. Comput. 1977. C 26. P. 1182−1191.
  12. Karelin V.P., Kuz’menko O.L. Vy’bor luchshego upravlencheskogo resheniya pri nechetkix isxodny’x danny’x i mnozhestvennosti kriteriev // Izvestiya vuzov. Sev.-Kavkazskij region. Texnicheskie nauki. 2006. Pril. № 1. S. 158−165.
  13. Chernov V.G. Nechetkie derev’ya reshenij (nechetkie poziczionny’e igry’) // Informaczionno-upravlyayushhie sistemy’. 2010. № 5(48). S. 8−14.
  14. Yager R.R. Multiple – objective decision – making using fuzzy sets // Intern. J. Man – machine Studies. 1977. V. 9. № 4. P. 375−382.
  15. Yager R.R. Multicriterial decisions with soft information: an application of fuzzy set and possibility theory // Fuzzy Mathematics. 1982. Pt. 1. V. 2. № 2. P. 21−28; Pt. 2. V. 2. № 3. P. 7−16.

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio