Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Application of tensor calculation in the task of cad systems for electronics

DOI 10.18127/j19997493-201901-09

Keywords:

V.N. Lantsov – Dr.Sc.(Eng.), Professor, Head of Department «Computer Engineering and Control Systems»,  Vladimir State University named after A.&N. Stoletovs
E-mail: lantsov@vlsu.ru


In this paper the review of methods for tensor usage at simulation tasks into electronic CAD systems are discussed. The methods of tensor decomposition are described. The possible versions of tensors usage in the tasks of electronic CAD systems are presented.

References:
  1. Tenzor. Vikipediya. URL = https://ru.wikipedia.org/wki/Tenzor/.
  2. Zhang Z., Batselier K., Liu H., Daniel L., Wong N. Tensor computation: a new framework for high-dimensional problems in EDA // IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems. 2017. V. 36. № 4. P. 521−536.
  3. Liu H., Daniel L., Wong N. Model reduction and simulation of nonlinear circuits via Tensor decomposition // IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems. 2015. V. 34. № 7. P. 1059−1069.
  4. Dolinina A.A., Lanczov V.N. Metod ponizheniya poryadka modelej na osnove ryadov Vol’terra // Dinamika slozhny’x sistem - XXI vek. 2016. № 3. S. 50−54.
  5. Lanczov V.N. Metody’ ponizheniya poryadka modelej slozhny’x sistem: Ucheb. posobie. Vladimir: izd-vo VlGU. 2017. 84 s.
  6. Cichocki A., et al. Tensor decompositions for signal processing applications: From two-way to multiway component analysis // IEEE Signal Process. Mag. March 2015. V. 32. № 2. P. 145−163.
  7. Zare A., Ozdemir A., Iwen M.A., Aviyente S. Extension of PCA to higher order data structures: an introduction to tensors, tensor decompositions, and tenzor PCA // Proc. of IEEE. 2018. V. 106. № 8. P. 1341−1356.
  8. Cichocki A., Lee N., Oseledets I.V., Phan A.H., Zhao Q., Mandic D. Low-rank tensor networks for dimensionality reduction and large-scale optimization problems: perspectives and challenges. Part 1 // Trends and Foundations in Machine Learning. URL = https://arxiv.org/abs/1609.00893.
  9. Novikov A., Trofimov M., Oseledets I. Exponential machines. Workshop track. ICLR 2017. Cornell University Library. 2017. 13 p. URL = https://arxiv.org/abs/1605.03795.
  10. Chertkov A.V., Oseledets I.V., Rakhuba M.V. Robust discretization in quantized tensor train format for elliptic problems in two dimensions. Cornell University Library. 2016. 26 p. URL = https://arxiv.org/abs/1612.01166.
  11. Low-Rank and Sparse Modeling for Visual Analysis / Editor Yun Fu. Springer. 2014. 240 p.
  12. Yang M.H., Ahuja N., Kriegman D. Face recognition using kernel eigenfaces // Proc. Int. Conf. Image Process., 2000. P. 37−40.
  13. Carroll J., Chang J.-J. Analysis of individual differences in multidimensional scaling via an n way generalization of «Eckart–Young» decomposition // Psychometrika. 1970. V. 35. № 3. P. 283−319.
  14. Harshman R.A. Foundations of the PARAFAC procedure: Models and conditions for an ‘explanatory’ multi-modal factor analysis // UCLA Work. Papers Phonet. 1970. V. 16. № 1. P. 84.
  15. Cichocki A., Mandic D., Phan A.H., Caiafa C., Zhou G., Zhao Q., De Lathauwer L. Tensor decompositions for signal processing applications: From two-way to multiway component analysis // IEEE Signal Processing Magazine. 2015. V. 32. № 2. P. 145−163.
  16. Grasedyck L. Hierarchical singular value decomposition of tensors // SIAM J. Matrix Anal. Appl. 2010. V. 31. № 4. P. 2029−2054.
  17. Ty’rty’shnikov E.E. Matrichny’j analiz i linejnaya algebra. M.: Fizmatlit. 2007. 480 s.
  18. Oseledets I.V. Tensor-train decomposition // SIAM J. Sci. Comput. 2011. V. 33. № 5. P. 2295−2317.
  19. Oseledets I.V., Tyrtyshnikov E.E. TT-cross approximation for multidimensional arrays // Linear Algebra Appl. 2010. V. 432. № 1. P. 70−88.
  20. Oseledecz I.V., Savost’yanov D.V. Minimizaczionny’e metody’ approksimaczii tenzorov i ix sravnenie // Zhurnal vy’chisl. matem. i matem. fiz. 2006. T. 46. № 10. 1725−1734.
  21. Liu J., Musialski P., Wonka P., Ye J. Tensor completion for estimating missing values in visual data // IEEE Trans. Pattern Anal. Mach. Intell. January 2013. V. 35. № 1. P. 208−220.
  22. Tensorlab: A MATLAB Toolbox for Tensor Computations. URL = https://www.tensorlab.net.
  23. Tt-Toolbox. URL = https://github.com/oseledets/TT-Toolbox.
  24. Hierarchical Tucker Toolbox. URL = https://anchp. epfl.ch/htucker.
  25. Bader B.W., Kolda T.G., et al. Matlab tensor toolbox version 2.6 (2015). URL = http://www.sandia.gov/ tgkolda/TensorToolbox/.
  26. Lanczov V.N. Sostoyanie v oblasti metodov modelirovaniya nelinejny’x VCh e’lektronny’x ustrojstv svyazi (obzor). Chast’ 1 // Proektirovanie i texnologiya e’lektronny’x sredstv. 2012. № 4. S. 2−11.

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio