Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Blurred image is processed by the detectors field

DOI 10.18127/j00338486-201906(8)-21

Keywords:

A.V. Ponomarev – Ph.D.(Eng.), Associate Professor, Dr.Sc.Candidate, MESC «Zhukovsky–Gagarin Air Force Academy» (Voronezh)
E-mail: cycloida@mail.ru
A.V. Bogoslovsky – Honored Scientist of RF, Dr.Sc.(Eng.), Professor, Department of Mathematics, MESC «Zhukovsky–Gagarin Air Force Academy» (Voronezh)
E-mail: abvngb@yandex.ru
I.V. Zhigulina – Ph.D.(Eng.), Associate Professor, Professor, Department of Mathematics, MESC «Zhukovsky–Gagarin Air Force Academy» (Voronezh)
E-mail: ira_zhigulina@mail.ru


The presence of blurring on the image has a negative effect when identifying objects of interest, even when using high-quality sensors. For the human eye, this interference has practically no significant effect in the process of detecting and recognizing objects, but when building automated data processing systems, the neglect and lack of compensation for blurring can lead to significant errors in the detection of objects of interest. The paper deals with biologically similar methods of processing distorted blurred images in which detectors fields are used, consisting of two types of detectors. It is shown that areas of constant or slowly varying brightness are not transmitted to the output of the detectors field. The result of the detection is an image of reduced dimension, containing the contour composition of the objects of the original image. Processing the distorted image by the detectors field allows you to determine the parameters of blurring and compensate for it when forming the output image.

References:
  1. Prett U. Tsifrovaya obrabotka izobrazhenii. M.: Mir. 1982. 312 s.
  2. Gonsales R., Vuds R. Tsifrovaya obrabotka izobrazhenii. M.: Tekhnosfera. 2012. 1104 c.
  3. Yane B. Tsifrovaya obrabotka izobrazhenii. M.: Tekhnosfera. 2007. 584 s.
  4. Fivenskii Yu.I. Metody povysheniya kachestva aerokosmicheskikh fotosnimkov. M.: Izd-vo Moskovskogo un-ta. 1977. 158 s.
  5. Richardson W.H. Bayesian-Based Iterative Method of Image Restoration. Journal of the optical society of America. 1972. V. 62 № 1. P. 55−59.
  6. Lucy L.B. An iterative technique for the rectification of observed distributions. The Astronomical journal. 1974. V. 79. № 6. P. 745−754.
  7. Vasilenko G.I., Taratorin A.M. Vosstanovlenie izobrazhenii. M.: Radio i svyaz. 1986. 304 s.
  8. Sizikov V.S., Rossiiskaya M.V., Kozachenko A.V. Obrabotka smazannogo izobrazheniya metodami differentsirovaniya, preobrazovaniya Khartli i regulyarizatsii Tikhonova. Izvestiya VUZov. Priborostroenie. 1999. T. 42. № 7. S. 11−15.
  9. Daineko M.V. Rekonstruktsiya smazannykh i zashumlennykh izobrazhenii metodami regulyarizatsii i usecheniya v tekhnicheskikh sistemakh obrabotki informatsii: avtoref. dis. … kand. tekhn. nauk: 05.11.01. SPb.: 2011. 23 s.
  10. Machikhin A.S. Avtomaticheskoe vosstanovlenie izobrazhenii, iskazhennykh pryamolineinym ravnomernym smazom. Priborostroenie. 2008. T. 51. № 1. S. 59−64.
  11. Yuzhikov V. Vosstanovlenie rasfokusirovannykh i smazannykh izobrazhenii. URL = http://habrahabr.ru/post/136853. Data obrashcheniya 31.12.2018.
  12. Smirnov P.V. Modelirovanie dvizheniya stseny po posledovatelnosti izobrazhenii na osnove psevdogradientnoi adaptatsii: dis. … kand. tekhn. nauk: 05.13.18. Ulyanovsk. 2015. 158 s.
  13. Yagola A.G., Koshev N.A. Vosstanovlenie smazannykh i defokusirovannykh tsvetnykh izobrazhenii. Vychislitelnye metody i programmirovanie. 2009. T. 9. S. 207−212.
  14. Kokoshkin A.V. i dr. Slepoe vosstanovlenie izobrazhenii, iskazhennykh smazom i defokusirovkoi, pri neizvestnoi forme i parametrakh AF. Zhurnal radioelektroniki. 2014. № 9. URL = http://jre.cplire.ru/jre/sep14/8/text.pdf. Data obrashcheniya 31.12.2018.
  15. Holmes. Blind deconvolution quantum-limited incoherent imagery: maximumlikelihood approach. J. Opt. Soc. Am. 1992. A9. P. 1052−1061.
  16. Wang Y., Yin W. Compressed Sensing via Iterative Support Detection. CAAM Technical Report TR09-30. 2009. P. 13−18.
  17. Yitzhaky Y., Mor I., Lantzman A., Kopeika N.S. Direct method for restoration of motion-blurred images. Journal of Opt. Soc. Am. A. 1998. 15. 6. P. 1512−1519.
  18. Levin A., Fergus R., Durand F., Freeman W.T. Image and depth from a conventional camera with a coded aperture. ACM Trans. 2007. 26, 3. Article № 70.
  19. Korobeinikov A.G., Fedosovskii M.E., Aleksanin S.A. Razrabotka avtomatizirovannoi protsedury dlya resheniya zadachi vosstanovleniya smazannykh tsifrovykh izobrazhenii. Kibernetika i programmirovanie. 2016. № 1. S. 270−291.
  20. Ponomarev A.V., Bogoslovskii A.V., Zhigulina I.V. Detektornye polya. Radiotekhnika. 2018. № 7. S. 129−136.
  21. Ponomarev A.V., Bogoslovskii A.V., Zhigulina I.V. Dvumernaya diskretnaya filtratsiya vykhodnykh signalov detektornykh polei. Radiotekhnika. № 7. 2018. S. 137−145.
  22. Ponomarev A.V., Bogoslovskii A.V., Zhigulina I.V. Model dreifa detektornogo polya. Radiotekhnika. 2018. № 11. S. 16−20.
  23. Bogoslovskii A.V., Ponomarev A.V., Zhigulina I.V. Identifikatsiya granits ob’ektov na osnove modeli dreifa detektornogo polya. Radiotekhnika. 2018. № 11. S. 21−25.

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio