Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS

Тел.: +7 (495) 625-9241


Work function of pillared graphene modified with potassium

DOI 10.18127/j00338486-201907(10)-13


O.E. Glukhova – Dr.Sc.(Phys.-Math.), Professor, Head of Department of Radiotechnique and Electrodynamics, Saratov State University named after N.G. Chernyshevsky
D.S. Shmygin – Assistant, Department of Radiotechnique and Electrodynamics, Saratov State University named after N.G. Chernyshevsky
M.M. Slepchenkov – Ph.D.(Phys.-Math.), Associate Professor, Department of Radiotechnique and Electrodynamics, Saratov State University named after N.G. Chernyshevsky

Pillared graphene is a carbon composite that consists of graphene sheets and bonded chemically single-walled carbon nanotubes (SWCNTs), oriented vertically. During the computational experiment, the electron density functional method was used in the tight-binding approximation with self-consistent charge calculation, the band structure and the work function were calculated in the process of numerical solution of the stationary Schrödinger equation for extended periodic structures of pillared graphene. To determine the equilibrium configurations, a reactive empirical bond-order method was additionally used. Pillared graphene monolayer, bilayer and 3D structures of pillared graphene were considered. By monolayer structures are meant with one layer of single-walled carbon nanotubes and two graphene sheets, bilayer structures have two layers of single-walled carbon nanotubes and three graphene sheets. The sizes of the supercells were: 2.46 nm and 2.13 nm along the X and Y axes accordingly for pillared graphene monolayer, 4.92 nm and 4.26 nm for bilayer and 3D pillared graphene. On the Z axis, the first two types of structures were non-periodic, and for the third, the translation vector length in this direction varied from 1.6 nm to 4.06 nm. During the study, it was found that the work function for all topological configurations of pillared graphene at all considered lengths of single-walled carbon nanotubes in the composite decreases, and for two-layer and 3D pillared graphene, the work function decreases at the same potassium mass fractions in the system back proportional to the length of the tubes – the work function decreases more significantly for short SWCNTs. For all the structures considering, a decrease in the work function of 1 eV or more was observed at 10% and 2…2.5 eV at the maximum mass fraction of the investigated ones.

  1. Neto A.C., Peres N.M.R., Novoselov K.S. Geim A.K. The electronic properties of graphene. Rev Mod Phys. 2009. V. 81. P. 109−162. DOI: 10.1103/RevModPhys.81.109.
  2. Avouris P., Chen Z., Perebeinos V. Carbon-based electronics. Nature Nanotechnology. 2007. V. 2(10). P. 605−15. DOI:
  3. Hone J., Whitney M., Piskoti C., Zettl A. Thermal conductivity of single-walled carbon nanotubes. Phys. Rev. B. 1999. V. 59. P. R2514 1−R2516 3. DOI: /10.1103/PhysRevB.59.R2514.
  4. Kim P., Shi L., Majumdar A., Mc Euen P.L. Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 2001. V. 87. P. 215502 1−215502 3. DOI: 10.1103/PhysRevLett.87.215502.
  5. Che J., Cagin T., Goddard W.A. Thermal conductivity of carbon nanotubes. Nanotechnology. 2000. V. 11. P. 65−69. DOI: 10.1186/1556-276X-6-610.
  6. Pop E., Mann D., Wang Q. et al. Thermal Conductance of an Individual Single-Wall Carbon Nanotube above Room Temperature. Nano Lett. 2006. V. 6. P. 96−100. DOI:
  7. Memariana F., Fereidoona A., Ganjib M.D. Graphene Young’s modulus: Molecular mechanics and DFT treatments. Superlattices and Microstructures. 2015. V. 85. P. 348−356. DOI: 10.1103/PhysRevB.80.113405.
  8. Lee C., Wei X., Kysar J.W., Hone J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science. 2008. V. 321. P. 385−388. DOI: 10.1126/science.1157996.
  9. Kim U., Kang J., Lee C. et al. A transparent and stretchable graphene-based actuator for tactile display. Nanotechnology. 2013. V. 24. P. 145501 1−145501 7. DOI: 10.1088/0957-4484/24/14/145501.
  10. Suzuki K., Matsumoto H., Minagawa M. et al. Carbon nanotubes on carbon fabrics for flexible field emitter arrays. Applied Physics Letters. 2008. V. 93. 053107. P. 1−3. DOI: 10.1063/1.2967868. DOI: 10.1063/1.2967868.
  11. Yilmazoglu O., Popp A., Pavlidis D., Schneider J.J. Flexible field emitter arrays with adjustable carbon nanotube distances and bundle generation arrays. Journal of Vacuum Science & Technology B. 2010. V. 28. P. 268−272. DOI: 10.1116/1.3298889.
  12. Li C., Zhang Y., Mann M., Hasko D. et al. High emission current density, vertically aligned carbon nanotube mesh, field emitter array. Applied Physics Letters. 2010. V. 97. 113107. P. 1−3. DOI: 10.1063/1.3490651.
  13. Gulyaev Yu.V., Chernozatonskii L.A., Kosakovskaja Z.Ja. et al. Field emitter arrays on nanotube carbon structure films. Journal of Vacuum Science & Technology B. 1995. V. 13. P. 435−436. DOI: 10.1116/1.587964.
  14. Musatov A.L., Izraelyants K.R., Chirkova E.G. Vliyanie atomov tseziya na avtoelektronnuyu emissiyu iz mnogostennykh uglerodnykh nanotrubok. Fizika tverdogo tela. 2014. T. 56. № 4. S. 806−810. (in Russian)
  15. Gao B., Kleinhammes A., Tang X.P. et al. Electrochemical intercalation of single-walled carbon nanotubes with lithium. Chemical Physics Letters. 1999. V. 307. № 3−4. P. 153−157. DOI: 10.1016/S0009-2614(99)00486-8.
  16. Izraelyants K.R., Orlov A.P., Ormont A.B., Chirkova E.G. Vliyanie legirovaniya atomami tseziya i kaliya mnogostennykh uglerodnykh nanotrubok, vyrashchennykh v elektricheskoi duge, na ikh emissionnye kharakteristiki. Fizika tverdogo tela. 2017. T. 59. № 4. S. 819−824. (in Russian)
  17. Kim J.-P., Chang H.-B., Kim B.-J., Park J.-S. Enhancement of electron emission and long-term stability of tip-type carbon nanotube field emitters via lithium coating. Thin Solid Films. 2013. V. 528. P. 242−246. DOI:
  18. Varshney V., Patnaik S.S., Roy A.K. et al. Modeling of Thermal Transport in Pillared-Graphene Architectures. ACS NANO. 2010. V. 4. 2. P. 1153−1161. DOI: 10.1021/nn901341r.
  19. Lee J., Varshney V., Brown J.S. et al. Single mode phonon scattering at carbon nanotube-graphene junction in pillared graphene structure. APL. 2012. V. 100. 183111. P. 1−4.
  20. Yang Y., Kim N.D., Varshney V. et al. In situ mechanical investigation of carbon nanotube-graphene junction in threedimensional carbon nanostructures. Nanoscale. 2017. V. 9. P. 2916−2924. DOI: 10.1039/c6nr09897e.
  21. Lin J., Zhong J., Bao D. et al. Supercapacitors Based on Pillared Graphene Nanostructures. Journal of Nanoscience and Nanotechnology. 2012. V. 12. № 3. P. 1770−1775. DOI: 10.1166/jnn.2012.5198.
  22. Wang W., Ozkan M., Ozkan C.S. Ultrafast high energy supercapacitors based on pillared graphene nanostructures. Journal of Materials Chemistry A. 2016. V. 4. P. 3356−3361. DOI: 10.1039/c5ta07615c.
  23. Glukhova O.E., Kolesnikova A.S., Slepchenkov M.M., Shmygin D.S. Atomnaya struktura energeticheski ustoichivykh kompozitov uglerodnye nanotrubki/grafen. Fizika tverdogo tela. 2015. T. 57. № 5. S. 994−998. (in Russian)
  24. Elstner M., Porezag D., Jungnickel G. et al. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Physical Review B. 1998. V. 58. № 11. P. 7260−7268. DOI:
  25. Stuart S.J., Tutein A.B., Harrison J.A. A reactive potential for hydrocarbons with intermolecular interactions. Journal of Chemical Physics. 2000. V. 112. № 14. P. 6472−6286. DOI:
  26. Brenner D.W., Shenderova O.A., Harrison J.A. et al. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. Journal of Physics: Condensed Matter. 2002. V. 14. P. 783−802. DOI:

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio