Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Optimal estimation of microwave parameters using the automatic network analyzers. Selection of optimal configuration of measurements

DOI 10.18127/j00338486-201907(10)-16

Keywords:

A.A. L’vov – D.Sc.(Eng.), Professor, Department of Information and Communication Systems and Software Engineering, Yuri Gagarin State Technical University of Saratov
E-mail: alvova@mail.ru
V.P. Meschanov – Honored Scientist of RF, D.Sc.(Eng.), Director of the JSC «NIKA-SVCH» (Saratov)
E-mail: nika373@bk.ru
M.S. Svetlov – D.Sc.(Eng.), Leading Research Scientist, Institute of Precision Mechanics and Control of Russian Academy of Sciences (Saratov)
E-mail: svetlovms@yandex.ru
N. Semezhev – Post-graduate Student, Department of Information and Communication Systems and Software Engineering, Yuri Gagarin State Technical University of Saratov
E-mail: supersem00@gmail.com


The use of multi-port reflectometers (MR) as measuring devices in microwave automatic network analyzers (ANA) allows one to create relatively cheap and highly accurate instruments for load parameter research. The paper describes a new approach to the design of microwave ANA based on MR. The proposed method is founded on the analysis of the variance-covariance matrices of estimation errors for state parameters of the system: generator – measuring device – two-port under test, obtained by the maximum likelihood method. Optimization of the MR parameters is performed by selecting the distances between the connection plane of the load under test and the measuring sensors of a multi-port, when the determinant of the variance-covariance error matrix is used as the optimization criterion. When designing the ANA for measurement in a narrow frequency band, an equidistant arrangement of MR sensors along its longitudinal axis was proposed. On the contrary, when designing a broadband analyzer it is impossible to find the arrangement of the MR sensors that allows one to measure with utmost accuracy at any arbitrary taken frequency from the operating range. So, optimization is performed by minimizing the estimation efficiency function (EEF) of the state parameters in the frequency band of measurements. In this case, it is necessary to abandon the concept of optimal measurement and move on to the concept of ensuring sufficient measurement accuracy in the entire frequency band due to the complexity of the resulting expressions for the EEF. The paper describes the computer-aided design of the ANA on the basis of MR, which allowed to find the location of a limited number of multi-terminal sensors (no more than eight) for measurement in a wide frequency range (up to seven octaves). The developed software of this system can be used for design of the real multiport reflectometers, which meet the given requirements. After designing the MP in the measurement process, it is proposed to use a system of measurement process control, when signals from the ports are taken into account with certain weights during estimation procedure. The application of the proposed measurement control system using projected MRs makes it possible to measure with potentially attainable accuracy at any frequency within a specified range.

References:
  1. Lvov A.A., Meshchanov V.P., Svetlov M.S. Optimalnoe otsenivanie parametrov SVCh-tsepei s pomoshchyu avtomaticheskikh analizatorov tsepei. Obshchaya postanovka zadachi. Radiotekhnika. 2016. № 10. S. 240−244. (in Russian)
  2. Lvov A.A., Meshchanov V.P., Svetlov M.S., Nikolaenko A.Yu. Optimalnoe otsenivanie parametrov SVCh-tsepei s pomoshchyu avtomaticheskikh analizatorov tsepei. Algoritmy obrabotki nablyudaemykh dannykh. Radiotekhnika. 2018. № 8. S. 147−154.
  3. Engen G.F. Uspekhi v oblasti SVCh izmerenii. TIIER. T. 66. № 4. 1978. S. 8−20. (in Russian)
  4. Lvov A.A., Morzhakov A.A., Kudryashov Yu.Yu., Galkina L.V. Statisticheskii podkhod k probleme izmereniya parametrov SVCh dvukhpolyusnikov s pomoshchyu mnogopolyusnika. Elektronnaya tekhnika. Ser. 1. Elektronika SVCh. 1989. Vyp. 8(422). S. 38−43. (in Russian)
  5. L’vov A.A., Geranin R.V., Semezhev N., L’vov P.A. Statistical Approach to Measurements with Microwave Multi-port Reflectometer and Optimization of Its Construction. Proceedings of 14th Conference on Microwave Techniques. Pardubice (Czech Republic). 2015. P. 179−183.
  6. Lvov A.A. Avtomaticheskii izmeritel parametrov SVCh dvukhpolyusnikov na osnove mnogopolyusnika. Izmeritelnaya tekhnika. 1996. № 2. S. 10−12. (in Russian)
  7. Rozenberg V.Ya. Vvedenie v teoriyu tochnosti izmeritelnykh sistem. M.: Sov. radio. 1975. (in Russian)
  8. Matematicheskaya teoriya planirovaniya eksperimenta. Pod red. S.M. Ermakova. M.: Nauka. 1983. (in Russian)
  9. L'vov A.A., Galkina S.A., Anufriev A.N. Design of wideband automatic network analyzers based on the multi-port reflectometer. Proceedings of IEEE International Conference on Actual Problems of Electron Devices Engineering (APEDE). Saratov (Russia). 2016.
  10. L’vov A.A., Geranin R.V., Semezhev N., Solopekina A.A., L’vov P.A. A Novel Parameter Estimation Technique for Software Defined Radio System Based on Broadband Multi-port Receiver. Proceedings of the 2015 International Siberian Conference on Control and Communications (SIBCON). Omsk. 2015. P. 320−324.
  11. Repin V.G., Tartakovskii G.P. Statisticheskii sintez v usloviyakh apriornoi neopredelennosti i adaptatsiya informatsionnykh sistem. M.: Sov. radio. 1977. (in Russian)
  12. Linnik Yu.V. Metod naimenshikh kvadratov i osnovy teorii obrabotki nablyudenii. M.: GIFML. 1958. (in Russian)
  13. Engen G.F. The Six-Port Reflectometer: An Alternative Network Analyzer. IEEE Trans. on Microwave Theory Tech. December 1977. V. MTT 25. P. 1075−1079.
  14. Peng H., Yang Z.Q., Yang T. Design and Implementation of an Ultra-Wideband Six-Port Network. Progress in Electromagnetics Research. 2012. V. 131. P. 293−310.
  15. Gupta K., Gardzh R., Chadkha R. Mashinnoe proektirovanie SVCh ustroistv. M.: Radio i svyaz. 1987. (in Russian)
  16. Madonna G., Ferrero A., Pirola M. Design of a Broadband Multiprobe Reflectometer. IEEE Trans. Instrum. Meas. April 1999. Vol. IM 48. P. 622−625.
  17. Katz B.M., L’vov A.A., Meschanov V.P., Shatalov E.M., Shilova L.V. Synthesis of a Wideband Multiprobe Reflectometer. IEEE Transactions on Microwave Theory and Techniques. February 2008. V. 56. № 2. P. 507−514.
  18. Lvov A.A., Morzhakov A.A., Shirshin C.I., Kudryashov Yu.Yu. Optimizatsiya parametrov mnogozondovoi izmeritelnoi linii. Elektronnaya tekhnika. 1988. Ser.1. Elektronika SVCh. Vyp. 14(414). S. 30−34. (in Russian)
  19. Monzingo R.A., Miller T.U. Adaptivnye antennye reshetki. M.: Radio i svyaz. 1986. (in Russian)
  20. Elyasberg P.E. Opredelenie dvizheniya po rezultatam izmerenii. M.: Nauka. 1976. (in Russian)
  21. Xu X., Wu K., Bosisio R.G. Six-Port Networks. Encyclopedia of RF and Microwave Engineering. École Polytechnique de Montreal. Montreal (Canada). 2005.
  22. Semezhev N., L’vov A.A., Sytnik A.A., L’vov P.A. Calibration Procedure for Combined Multi-Port Wave-Correlator. Proc. IEEE Russia Section Young Researchers in Electrical and Electronic Engineering Conf. St. Petersburg (Russia). 2017. P. 490−495.

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio