Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS

Тел.: +7 (495) 625-9241


The approach to instrumental estimation of the digital compressed video data stream, formed with the video codecs

DOI 10.18127/j20700814-201905-04


S.V. Kuleshov – Dr.Sc.(Eng.), Main Research Scientist, Deputy Director for Research, St. Petersburg Institute for Informatics and Automation of RAS
A.A. Zaytseva – Ph.D.(Eng.), Senior Research Scientist, St. Petersburg Institute for Informatics and Automation of RAS

When evaluating and comparing video compression tools by objective or subjective criteria, there is basically no assessment of codecs in terms of human perception, as well as environmental friendliness of video information. The main problem in measuring subjective parameters is the lack of tools that can be used to evaluate parameters such as the amount of environmental risk. The level of compression noise and the parameters of the GOP structure, on which the characteristic frequencies of the occurring periodic oscillations depend, will determine this risk.
The paper proposes an approach to the instrumental assessment of the digital stream of compressed video data generated by video codecs in order to instrumental measure the subjective characteristics of their work and assess the environmental friendliness of various codecs.
The proposed approach to visualizing the structure of a video stream based on a temporary analysis of the video codec's operation allows the content of the bit stream to be presented in the form of structural blocks and provides an instrumental assessment of subjective parameters related to the perception of an image subjected to loss compression. Because of checking the codecs using the developed software, the urgency of the problem of environmental safety of video data related to the appearance in the noise of compression of periodic components at frequencies falling into the frequency range of the rhythms of the human brain is shown.
The full set of data compression functions defined by the standard are used only by software implementations. Hardware codecs use, as a rule, a limited set of macroblock types, prediction types and bypass methods, without going beyond the requirements of the standard level, but limiting themselves within it.
The developed toolkit allows you to evaluate the environmental friendliness of various codecs, as well as give recommendations on choosing a configuration and setting up codecs for specific tasks. The development of the proposed methodology for visualizing the structures formed by the codecs allows us to assess the impact of the encoding parameters available for changing, for example, changing the frequency of use of key slices, managing the numerical parameters of the components of the codec, changing the quantization parameters, controlling the type of entropy compression, etc.

  1. Tsvetkov O.V. Metody i modeli entropiinoi optimizatsii sistem obrabotki, khraneniya i peredachi videodannykh. Dis. … dokt. tekhn. nauk. 05.13.01. SPb.: SPIIRAN. 2011. 294 s. (In Russian).
  2. Tsvetkov O.V. Entropiinyi analiz dannykh v fizike, biologii i tekhnike. SPb.: Izd-vo SPbGETU «LETI». 2015. 202 s. (In Russian).
  3. ITU-T Tutorial: Objective perceptual assessment of video quality: Full reference television. 2004.
  4. ITU-T Rec. P.910: Subjective video quality assessment methods for multimedia applications. 2008.
  5. Kuleshov S.V. Gibridnye kodeki i ikh primenenie v tsifrovykh programmiruemykh kanalakh peredachi dannykh. Informatsionno-izmeritelnye i upravlyayushchie sistemy. 2012. T. 10. № 5. S. 41−45. (In Russian).
  6. Alexandrov V.V., Kuleshov S.V., Zaytseva A.A. Active Data in Digital Software Defined Systems Based on SEMS Structures. Ed. by A.E. Gorodetskiy. Smart Electromechanical Systems: Studies in Systems, Decision and Control. 2016. V. 49. P. 61−69.
  7. Kuleshov S.V. Vremennoi analiz aktivnosti video potoka. Informatsionno-izmeritelnye i upravlyayushchie sistemy. 2011. T. 9. № 4. S. 48−51. (In Russian).
  8. Kuleshov S.V., Zaitseva A.A. Vremennoi analiz kodekov H.264. Izvestiya VUZov. Ser. Priborostroenie. 2017. T. 60. № 11. S. 1092−1095. (In Russian).
  9. Wiegand T., Sullivan G., Bjontegaard G. and Luthra A. Overview of the H.264. AVC Video Coding Standard. IEEE Transactions on Circuits and Systems for Video Technology. 2003.
  10. FFmpeg – A complete, cross-platform solution to record, convert and stream audio and video [Elektronnyi resurs]. URL = (data obrashcheniya 10.06.2016).
  11. Libav – Open source audio and video processing tools [Elektronnyi resurs]. URL = (data obrashcheniya 10.06.2016).
  12. Elecard StreamEye [Elektronnyi resurs]. URL = (data obrashcheniya 11.07.2016).
  13. Karyakin V.L. Tsifrovoe televidenie: uchebnoe posobie dlya vuzov. Izd. 2-e, pererab. i dop. M.: SOLON-PRESS. 2013. 448 s. (In Russian).
  14. Iain E., Richardson G. H.264 and MPEG-4 Video Compression: Video Coding for Next-generation Multimedia. John Wiley & Sons, Ltd. 2003.
  15. Schwarz H., Marpe D., Wiegand T. CABAC and slices. JVT document JVT-D020. Klagenfurt, Austria. July 2002.
  16. ISO/IEC 14496-10 and ITU-T Rec. H.264. Advanced Video Coding. 2003.
  17. Saadati M., Nelson J., Ayaz H. Convolutional neural network for hybrid fNIRS-EEG mental workload classification. Advances in Intelligent Systems and Computing. 2020. V. 953. P. 221−232.
June 24, 2020
May 29, 2020

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio